1
|
Lee HY, Park YM, Shin DY, Hwang HM, Jeong HN, Park HY, Yang HJ, Ha GS, Ryu MS, Seo JW, Jeong DY, Bae JS, Kim BS, Kim JG. Immune-enhancing effect of fermented soybean food, Cheonggukjang on cyclophosphamide-treated immunosuppressed rat. Heliyon 2024; 10:e37845. [PMID: 39328544 PMCID: PMC11425096 DOI: 10.1016/j.heliyon.2024.e37845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cheonggukjang (CGJ) is a traditional food, made by the fermentation of beans, and it has different recipes for different regions in Korea. However, it has anti-inflammatory, anti-cancer, and anti-obesity effects, and is known to affect changes in the intestinal microbiota. In this study, we investigated the immune-enhancing effects of four type CGJs (one commercial and three transitional CGJs). In the cyclophosphamide (CP)-treated immunosuppressed rat, oral administration of CGJs for 4 weeks was used to investigate weight of body and immune organ, change of microbiota, blood and serum parameters, inflammation pathways (MAPKs and NFκB) and histology of spleen. It showed an immunity-enhancing effect through increase Bacteroidetes in gut, the recovery of complete blood count, levels of cytokines and IgG, activation of inflammatory pathways, and histology of spleen. In conclusion, these results show that the intake of a commercial brand CGJ, and traditional CGJs can maintain or promote the body's immunity.
Collapse
Affiliation(s)
- Hak Yong Lee
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Young Mi Park
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Dong Yeop Shin
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
- Department of Integrated Life Science and Technology, Kongju National University, 32439, Republic of Korea
| | - Hai Min Hwang
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Han Na Jeong
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Hyo Yeon Park
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Gwang Su Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Byeong Soo Kim
- Department of Integrated Life Science and Technology, Kongju National University, 32439, Republic of Korea
| | - Jae Gon Kim
- INVIVO Co. Ltd., 121, Deahak-ro, Nonsan, Chungnam, 32992, Republic of Korea
| |
Collapse
|
2
|
Barathikannan K, Chelliah R, Vijayalakshmi S, Ofosu FK, Yeon SJ, Lee DS, Park JS, Kim NH, Oh DH. Untargeted Metabolomics and Gut Microbiota Modulation Study of Fermented Brown Rice for Obesity. ACS OMEGA 2024; 9:37636-37649. [PMID: 39281900 PMCID: PMC11391566 DOI: 10.1021/acsomega.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
Obesity or excess adipose tissue mass increases the risk of heart disease, hypertension, and diabetes. Obesity might be prevented by consuming plant-based probiotic fermented foods. This study aimed to determine whether adding Pediococcus acidilactici MNL5 to fermented brown rice (FBR) enhances its metabolites, lipase activity, and antioxidant efficiency. UHPLC-Q-TOF-MS/MS analysis revealed significant changes in untargeted metabolite profiles, while, compared with those of raw brown rice (RBR), FBR contained more antioxidant and lipase inhibitors. We evaluated the FBR in HFD (high-fat-diet)-induced obese mice by employing biochemical, histological, gut microbiome, and serum metabolomics approaches. FBR MD (250 mg/kg) decreased body weight (BW) and fat content compared with RBR. With subsequent FBR MD, mice fed a HFD may have reduced serum lipid levels. A HFD with a mid-dose FBR improved the gut microbiota diversity, composition, and structure; reduced the abundance of obesity-related genera such as Helicobacter, Clostridium, and Desulfovibrio; and promoted the abundance of beneficial genera such as Bifidobacterium, Akkermansia, and Lactobacillus, which are inversely correlated with BW, total cholesterol, TG, LDL-C, and HDL-C. In addition, FBR MD has been associated with increased levels of palmitic acid, EPA, oleic acid, α-linolenic acid, indole, dodecanoic acid, and amino acids. FBR, in its entirety, has exhibited promise as a functional material for ameliorating obesity.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future F Biotech Co., Ltd., Chuncheon 24341, South Korea
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Life Science Institute, Well-being LS Co., Ltd., Gangneung 25451, Republic of Korea
| | - Deuk-Sik Lee
- Life Science Institute, Well-being LS Co., Ltd., Gangneung 25451, Republic of Korea
| | - Jong-Soon Park
- Life Science Institute, Well-being LS Co., Ltd., Gangneung 25451, Republic of Korea
| | - Nam-Hyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future F Biotech Co., Ltd., Chuncheon 24341, South Korea
- Kangwon Institute of Inclusive Technology KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Zhang XF, Qi Y, Zhang YP, Deng JL, Chen XL, Li RN, Zhou QL, Fan JM. Fermented foods and metabolic outcomes in diabetes and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2024; 64:9514-9531. [PMID: 37204758 DOI: 10.1080/10408398.2023.2213770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several randomized controlled trials (RCTs) have investigated the effects of fermented foods on metabolic outcomes in adult patients suffering from diabetes and prediabetes. However, the results of these RCTs are conflicting. This systematic review and meta-analysis was carried out on data from RCTs to evaluate the effects of fermented foods in patients with diabetes and prediabetes. The PubMed, Web of Science, Embase, the Cochrane Library and Scopus databases were searched up to 21 June, 2022. English-language RCTs of fermented foods consumption were included which gave metabolic outcomes on body composition, glucose control, insulin sensitivity, lipid profile, as well as blood pressure. Eighteen RCTs met the inclusion criteria and 843 participants were included in the final analysis. The pooled results showed a significant reduction of fasting blood glucose (FBG), the homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), low density lipid cholesterol (LDL-C) and diastolic blood pressure (DBP) in the intervention group versus the control group. The results of this research showed that fermented foods have the potential to improve some metabolic outcomes, including FBG, HOMA-IR, TC, LDL-C, and DBP in patients with diabetes and prediabetes.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Ping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruo-Nan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qi-Lun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Park JY, Kim HR, Lee SH, Lee SW, Sin HS, Lim TG, Kim SY, Park MH. Anti-Obesity Properties of Blackberries Fermented with L. plantarum JBMI F5 via Suppression of Adipogenesis Signaling Mechanisms. Int J Mol Sci 2024; 25:6164. [PMID: 38892352 PMCID: PMC11173001 DOI: 10.3390/ijms25116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.
Collapse
Affiliation(s)
- Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Sang-Wang Lee
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Hong-Sig Sin
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| |
Collapse
|
5
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
6
|
Cheng S, Li B, Ding Y, Hou B, Hung W, He J, Jiang Y, Zhang Y, Man C. The probiotic fermented milk of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 alleviates constipation via improving gastrointestinal motility and gut microbiota. J Dairy Sci 2024; 107:1857-1876. [PMID: 37923200 DOI: 10.3168/jds.2023-24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Constipation is directly related to the intestinal microenvironment, in which the promotion of gastrointestinal (GI) motility and improvement of gut microbiota distribution are important for alleviating symptoms. Herein, after the intervention of probiotic fermented milk (FMMIX) containing Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 for 14 d in Kunming mice with loperamide-induced constipation, the results indicated that FMMIX significantly increased the secretion of serum motilin, gastrin and 5-hydroxytryptamine, as well as decreased the secretion of peptide YY, vasoactive intestinal peptide, and nitric oxide in mice. As determined by immunohistochemical analysis, FMMIX promoted an augmentation in the quantity of Cajal interstitial cells. In addition, the mRNA and protein expression of c-kit and stem cell factor (SCF) were upregulated to facilitate intestinal motility. High-throughput sequencing and gas chromatography techniques revealed that FMMIX led to an increase in the relative abundance of beneficial bacteria (Lactobacillus, Oscillospira, Ruminococcus, Coprococcus, and Akkermansia), reduced the presence of harmful bacteria (Prevotella), and resulted in elevated levels of short-chain fatty acids (SCFA) with a superior improvement compared with unfermented milk. Untargeted metabolomics revealed significant upregulation of functional metabolites such as l-pipecolinic acid, dl-phenylalanine, and naringenin in FMMIX, presumably playing a potential role in constipation relief. Overall, our results showed that FMMIX had the potential to alleviate constipation symptoms in mice by improving the secretion of serum GI regulatory peptides and neurotransmitters, increasing the expression of c-kit and SCF proteins, and modulating the gut microbiota structure and SCFA levels, and may be associated with an increase in these functional metabolites. This suggested that FMMIX could be a promising adjunctive strategy for managing constipation symptoms and could contribute to the development of functional foods aimed at improving gut health.
Collapse
Affiliation(s)
- Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Baochao Hou
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Shanghai 201111, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Mitchell E, Comerford K, Knight M, McKinney K, Lawson Y. A review of dairy food intake for improving health among black geriatrics in the US. J Natl Med Assoc 2024; 116:274-291. [PMID: 38365561 DOI: 10.1016/j.jnma.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
The transition to older adulthood is generally marked by progressive declines in body composition, metabolism, cognitive function, and immunity. For socially disadvantaged geriatric populations such as Black Americans, this life stage may also include additional stressors, including dealing with discrimination, poor access to healthcare, and food insecurity. These types of chronic stressors are linked to a higher allostatic load, which is associated with accelerated biological aging, higher rates of adverse health outcomes, and an overall lower quality of life. Of the numerous factors involved in healthy aging, a growing body of research indicates that consuming a higher quality diet that is rich in fruits, vegetables, whole grains, protein foods, and dairy foods, is one of the most potent factors for helping to protect against age-related disease progression. Among the food groups listed above that are recommended by the 2020-2025 Dietary Guidelines for Americans dairy foods are unique in their ability to provide several of the essential nutrients (e.g., high-quality protein, calcium, potassium, vitamin B12, and vitamin D in fortified products) that are most often inadequately consumed by older Black Americans. However, dairy is the most inadequately consumed food group in the US, with older Black adults consuming fewer than half of the 3 daily recommended servings. Therefore, this review examines the current body of evidence exploring the links between dairy intake and age-related disease risk, with a special focus on health and disparities among older Black Americans. Overall, the evidence from most systematic reviews and/or meta-analyses focused on dairy intake and musculoskeletal health suggest that higher dairy intake across the life span, and especially from fermented and fortified products, is associated with better bone and muscle health outcomes in older adults. The evidence on dairy intake and neurocognitive and immune outcomes among older adults holds significant promise for potential benefits, but most of these results are sourced from individual studies or narrative reviews and are not currently corroborated in systematic reviews or meta-analyses. Additionally, most of the research on dairy intake and age-related disease risk has been performed in White populations and can only be extrapolated to Black populations. Nonetheless, older Black populations who do not meet the DGA recommended 3 servings of dairy per day due to lactose intolerance, restrictive dietary patterns, or for other reasons, are likely falling short of several of the nutritional requirements necessary to support healthy aging.
Collapse
Affiliation(s)
- Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| | - Kevin Comerford
- OMNI Nutrition Science; California Dairy Research Foundation, Davis, CA, United States.
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yolanda Lawson
- Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Kao CC, Lin JY. Anti-inflammatory effects of a naturally lacto-fermented cucumber product on RAW 264.7 macrophages in association with increased functional ingredients. Food Chem X 2023; 20:101039. [PMID: 38144729 PMCID: PMC10740051 DOI: 10.1016/j.fochx.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A naturally lacto-fermented cucumber product was developed for use as anti-inflammatory functional foods. To explore the anti-inflammatory characteristics, water (CWE) and ethanol extracts (CEE) from this product were selected to assess their anti-inflammatory potential on RAW 264.7 macrophages in the absence or presence of lipopolysaccharide (LPS), using four different inflammatory models. Changes in pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokine secretions by treated macrophages were measured using ELISA. The results showed that both CWE and CEE had strong potential to inhibit LPS-stimulated inflammation in macrophages in a repair manner. CWE had a better effect than CEE. The total phenolic, flavonoid and saponin contents in CEE were significantly (P < 0.05) correlated with IL-10 (r = 0.384, P = 0.036*) and TNF-α (r = 0.371, P = 0.043*) levels, but slightly correlated with TNF-α/IL-10 secretion ratios (r = -0.184, P = 0.359) by treated RAW 264.7 cells, respectively.
Collapse
Affiliation(s)
- Chien-Chia Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
10
|
Abstract
Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although α- and β-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota. IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.
Collapse
|
11
|
Jalili M, Nazari M, Magkos F. Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int J Mol Sci 2023; 24:ijms24032665. [PMID: 36768984 PMCID: PMC9916812 DOI: 10.3390/ijms24032665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can also increase the number of beneficial gut bacteria. Regular consumption of fermented foods has been associated with a variety of health benefits (although some health risks also exist), including improved digestion, enhanced immunity, and greater weight loss, suggesting that fermented foods have the potential to help in the design of effective nutritional therapeutic approaches for obesity. In this article, we provide a comprehensive overview of the health effects of fermented foods and the corresponding mechanisms of action in obesity and obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Mahsa Jalili
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Maryam Nazari
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan JF62+4W5, Iran
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
12
|
Khosroshahi ED, Razavi SH. Wheat germ valorization by fermentation: A novel insight into the stabilization, nutritional/functional values and therapeutic potentials with emphasis on anti-cancer effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Fermented Foods of Korea and Their Functionalities. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermented foods are loved and enjoyed worldwide and are part of a tradition in several regions of the world. Koreans have traditionally had a healthy diet since people in this region have followed a fermented-foods diet for at least 5000 years. Fermented-product footprints are evolving beyond boundaries and taking the lead in the world of food. Fermented foods, such as jang (fermented soybean products), kimchi (fermented vegetables), jeotgal (fermented fish), and vinegar (liquor with grain and fruit fermentation), are prominent fermented foods in the Korean culture. These four major fermented foods have been passed down through the generations and define Korean cuisine. However, scientific advancements in the fermentation process have increased productivity rates and facilitated global exports. Recently, Korean kimchi and jang have garnered significant attention due to their nutritional and health-beneficial properties. The health benefits of various Korean fermented foods have been consistently supported by both preclinical and clinical research. Korean fermented foods effectively reduce the risk of cardiovascular and chronic metabolic diseases, such as immune regulation, memory improvement, obesity, diabetes, and high blood pressure. Additionally, kimchi is known to prevent and improve multiple metabolic diseases, including irritable bowel syndrome (IBS), and improve beneficial intestinal bacteria. These functional health benefits may reflect the synergistic effect between raw materials and various physiologically active substances produced during fermentation. Thus, fermented foods all over the world not only enrich our dining table with taste, aroma, and nutrition, but also the microorganisms involved in fermentation and metabolites of various fermentations have a profound effect on human health. This article describes the production and physiological functions of Korean fermented foods, which are anticipated to play a significant role in the wellness of the world’s population in the coming decades.
Collapse
|
15
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
16
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|