1
|
Xie H, Li W, Zhang R, Li H, Zhang Y, Guo R, Zhang J, Li J, Qing B, Duan W, Wang X. Edwardsiella tarda Causing Septicemia in a Wild Crested Ibis (Nipponia nippon). J Wildl Dis 2024; 60:232-235. [PMID: 37972637 DOI: 10.7589/jwd-d-23-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023]
Abstract
An adult Crested Ibis (Nipponia nippon) was found moribund in the Qinling area of China. Postmortem examination and histopathological analysis revealed lung inflammation and multi-organ hemorrhage. Bacterial isolation and whole-genome sequencing confirmed Edwardsiella tarda infection.
Collapse
Affiliation(s)
- Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanjie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Junda Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoping Qing
- Shaanxi Hanzhong Crested Ibis National Nature Reserve Administration, Yang County, Shaanxi, China
| | - Wenbin Duan
- Shaanxi Hanzhong Crested Ibis National Nature Reserve Administration, Yang County, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
3
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
4
|
Genome Report of Emergent Fish Pathogen
Edwardsiella piscicida
Recovered from
Pseudoplatystoma corruscans
in Brazil. Microbiol Resour Announc 2022; 11:e0079622. [DOI: 10.1128/mra.00796-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Edwardsiella piscicida
is a Gram-negative bacteria belonging to the
Hafniaceae
family which affects several species of marine and freshwater fish. We present the complete genome of
E
.
piscicida
strain BEP80 recovered from the Brazilian catfish named Surubim (
Pseudoplatystoma corruscans
), consisting a chromosome of 3,883,256 bp and no plasmids.
Collapse
|