1
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
2
|
Ochirbat E, Zbonikowski R, Sulicka A, Bończak B, Bonarowska M, Łoś M, Malinowska E, Hołyst R, Paczesny J. Heteroaggregation of virions and microplastics reduces the number of active bacteriophages in aqueous environments. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:665-677. [PMID: 36785877 DOI: 10.1002/jeq2.20459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 05/06/2023]
Abstract
The objective of this study is to explore the effects of microplastics on the viability of the bacteriophages in an aqueous environment. Bacteriophages (phages), that is, viruses of bacteria, are essential in homeostasis. It is estimated that phages cause up to 40% of the death of all bacteria daily. Any factor affecting phage activity is vital for the whole food chain and the ecology of numerous niches. We hypothesize that the number of active phages decreases due to the virions' adsorption on microplastic particles or by the released leachables from additives used in the production of plastic, for example, stabilizers, plasticizers, colorants, and reinforcements. We exposed three diverse phages, namely, T4 (tailed), MS2 (icosahedral), and M13 (filamentous), to 1 mg/mL suspension of 12 industrial-grade plastics [acrylonitrile butadiene styrene, high-impact polystyrene, poly-ε-caproamide, polycarbonate, polyethylene, polyethylene terephthalate, poly(methyl methacrylate), polypropylene, polystyrene, polytetrafluoroethylene, polyurethane, and polyvinyl chloride] shredded to obtain microparticles of radius ranging from 2 to 50 μm. The effect of leachables was measured upon exposure of phages not to particles themselves but to the buffer preincubated with microplastics. A double-overlay plaque counting method was used to assess phage titers. We employed a classical linear regression model to verify which physicochemical parameters (65 variables were tested) govern the decrease of phage titers. The key finding is that adsorption mechanisms result in up to complete scavenging of virions, whereas leachables deactivate up to 50% of phages. This study reveals microplastic pollution's plausible and unforeseen ecotoxicological effect causing phage deactivation. Moreover, phage transmission through adsorption can alter the balance of the food chain in the new environment. The effect depends mainly on the zeta potentials of the polymers and the phage type.
Collapse
Affiliation(s)
- Enkhlin Ochirbat
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sulicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Łoś
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
- Phage Consultants, Gdańsk, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
- CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|
4
|
Ultrafast and Multiplexed Bacteriophage Susceptibility Testing by Surface Plasmon Resonance and Phase Imaging of Immobilized Phage Microarrays. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the context of bacteriophage (phage) therapy, there is an urgent need for a method permitting multiplexed, parallel phage susceptibility testing (PST) prior to the formulation of personalized phage cocktails for administration to patients suffering from antimicrobial-resistant bacterial infections. Methods based on surface plasmon resonance imaging (SPRi) and phase imaging were demonstrated as candidates for very rapid (<2 h) PST in the broth phase. Biosensing layers composed of arrays of phages 44AHJD, P68, and gh-1 were covalently immobilized on the surface of an SPRi prism and exposed to liquid culture of either Pseudomonas putida or methicillin-resistant Staphylococcus aureus (i.e., either the phages’ host or non-host bacteria). Monitoring of reflectivity reveals susceptibility of the challenge bacteria to the immobilized phage strains. Investigation of phase imaging of lytic replication of gh-1 demonstrates PST at the single-cell scale, without requiring phage immobilization. SPRi sensorgrams show that on-target regions increase in reflectivity more slowly, stabilizing later and to a lower level compared to off-target regions. Phage susceptibility can be revealed in as little as 30 min in both the SPRi and phase imaging methods.
Collapse
|