1
|
Identification and Characterization of Copy Number Variations Regions in West African Taurine Cattle. Animals (Basel) 2022; 12:ani12162130. [PMID: 36009719 PMCID: PMC9405125 DOI: 10.3390/ani12162130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 106 West African taurine cattle belonging to the Lagunaire breed of Benin (33), the N’Dama population of Burkina Faso (48), and N’Dama cattle sampled in Congo (25) were analyzed for Copy Number Variations (CNVs) using the BovineHDBeadChip of Illumina and two different CNV calling programs: PennCNV and QuantiSNP. Furthermore, 89 West African zebu samples (Bororo cattle of Mali and Zebu Peul sampled in Benin and Burkina Faso) were used as an outgroup to ensure that analyses reflect the taurine cattle genomic background. Analyses identified 307 taurine-specific CNV regions (CNVRs), covering about 56 Mb on all bovine autosomes. Gene annotation enrichment analysis identified a total of 840 candidate genes on 168 taurine-specific CNVRs. Three different statistically significant functional term annotation clusters (from ACt1 to ACt3) involved in the immune function were identified: ACt1 includes genes encoding lipocalins, proteins involved in the modulation of immune response and allergy; ACt2 includes genes encoding coding B-box-type zinc finger proteins and butyrophilins, involved in innate immune processes; and Act3 includes genes encoding lectin receptors, involved in the inflammatory responses to pathogens and B- and T-cell differentiation. The overlap between taurine-specific CNVRs and QTL regions associated with trypanotolerant response and tick-resistance was relatively low, suggesting that the mechanisms underlying such traits may not be determined by CNV alterations. However, four taurine-specific CNVRs overlapped with QTL regions associated with both traits on BTA23, therefore suggesting that CNV alterations in major histocompatibility complex (MHC) genes can partially explain the existence of genetic mechanisms shared between trypanotolerance and tick resistance in cattle. This research contributes to the understanding of the genomic features of West African taurine cattle.
Collapse
|
2
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/23/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|
3
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 08/31/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|
4
|
Goyache F, Pérez-Pardal L, Fernández I, Traoré A, Menéndez-Arias NA, Álvarez I. Ancient autozygous segments subject to positive selection suggest adaptive immune responses in West African cattle. Gene 2021; 803:145899. [PMID: 34400278 DOI: 10.1016/j.gene.2021.145899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
Small-sized and trypanotolerant West African taurine (Bos taurus) cattle are a unique case of human-mediated process of adaptation to a challenging environment. Extensive gene flow with Sahelian zebu (B. indicus), bigger and with some resistance to tick attack, occurred for centuries and allowed the apparition of stable crossbred populations (sanga) having intermediate characteristics. Up to 237 individuals belonging to 10 different taurine, zebu and sanga cattle populations sampled in Benin, Burkina Faso and Niger were typed using the BovineHD BeadChip of Illumina to identify signatures of selection, assessed using three different Extended-Haplotype-Homozygosity-based statistics, overlapping with ancient, originated 1024 or 2048 generations ago, Homozygosity-By-Descent segments in the cattle genome. Candidate genomic regions were defined ensuring their importance within cattle type and using zebu as reference. Functional annotation analysis identified four statistically significant Annotation Clusters in taurine cattle (from ACt1 to ACt4), one (ACs1) in sanga, and another (ACz1) in zebu cattle, fitting well with expectations. ACt1 included genes primarily associated with innate immunity; ACt2 involved bitter taste receptor genes of importance to adaptation to changing environments; ACt3 included 68 genes coding ATP-binding proteins, some of them located on trypanotolerance-related QTL regions, that can partially underlie immune response and the additive mechanism of trypanotolerance; ACt4 was associated with growth and small size (NPPC gene); ACs1 included genes involved in immune response; and ACz1 is related with ectoparasite resistance. Our results provide a new set of genomic areas and candidate genes giving new insights on the genomic impact of adaptation in West African cattle.
Collapse
Affiliation(s)
- Félix Goyache
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain.
| | | | - Iván Fernández
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain
| | - Amadou Traoré
- Institut de l'Environnement et des Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso
| | | | - Isabel Álvarez
- SERIDA-Deva, Camino de Rioseco 1225, E-33394-Gijón, Spain
| |
Collapse
|
5
|
Álvarez I, Fernández I, Traoré A, Pérez-Pardal L, Menéndez-Arias NA, Goyache F. Genomic scan of selective sweeps in Djallonké (West African Dwarf) sheep shed light on adaptation to harsh environments. Sci Rep 2020; 10:2824. [PMID: 32071365 PMCID: PMC7028950 DOI: 10.1038/s41598-020-59839-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The Djallonké (West African Dwarf) sheep is a small-sized haired sheep resulting from a costly evolutionary process of natural adaptation to the harsh environment of West Africa including trypanosome challenge. However, genomic studies carried out in this sheep are scant. In this research, genomic data of 184 Djallonké sheep (and 12 Burkina-Sahel sheep as an outgroup) generated using medium-density SNP Chips were analyzed. Three different statistics (iHS, XP-EHH and nSL) were applied to identify candidate selection sweep regions spanning genes putatively associated with adaptation of sheep to the West African environment. A total of 207 candidate selection sweep regions were defined. Gene-annotation enrichment and functional annotation analyses allowed to identify three statistically significant functional clusters involving 12 candidate genes. Genes included in Functional Clusters associated to selection signatures were mainly related to metabolic response to stress, including regulation of oxidative and metabolic stress and thermotolerance. The bovine chromosomal areas carrying QTLs for cattle trypanotolerance were compared with the regions on which the orthologous functional candidate cattle genes were located. The importance of cattle BTA4 for trypanotolerant response might have been conserved between species. The current research provides new insights on the genomic basis for adaptation and highlights the importance of obtaining information from non-cosmopolite livestock populations managed in harsh environments.
Collapse
Affiliation(s)
- Isabel Álvarez
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain
| | - Iván Fernández
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain
| | - Amadou Traoré
- Institut de l'Environnement et des Recherches Agricoles (INERA), Ouagadougou, 04 BP 8645, Burkina Faso
| | | | | | - Félix Goyache
- Servicio Regional de Investigación y Desarrollo Agroalimentario, E-33394, Gijón, Spain.
| |
Collapse
|
6
|
Álvarez I, Pérez-Pardal L, Traoré A, Koudandé DO, Fernández I, Soudré A, Diarra S, Sanou M, Boussini H, Goyache F. Differences in genetic structure assessed using Y-chromosome and mitochondrial DNA markers do not shape the contributions to diversity in African sires. J Anim Breed Genet 2017; 134:393-404. [PMID: 28464302 DOI: 10.1111/jbg.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/25/2017] [Indexed: 11/30/2022]
Abstract
Up to 173 African sires belonging to 11 different subpopulations representative of four cattle groups were analysed for six Y-specific microsatellite loci and a mitochondrial DNA fragment. Differences in Y-chromosome and mtDNA haplotype structuring were assessed. In addition, the effect of such structuring on contributions to total genetic diversity was assessed. Thirty-five Y-chromosome and 71 mtDNA haplotypes were identified. Most Y-chromosomes analysed (73.4%) were of zebu origin (11 haplotypes). Twenty-two Y-haplotypes (44 samples) belonged to the African taurine subfamily Y2a. All mtDNA haplotypes belonged to the "African" taurine T1 haplogroup with 16 samples and nine haplotypes belonging to a recently identified subhaplogroup (T1e). Median-joining networks showed that Y-chromosome phylogenies were highly reticulated with clear separation between zebu and taurine clusters. Mitochondrial haplotypes showed a clear star-like shape with small number of mutations separating haplotypes. Mitochondrial-based FST -statistics computed between cattle groups tended to be statistically non-significant (p > .05). Most FST values computed among groups and subpopulations using Y-chromosome markers were statistically significant. AMOVA confirmed that divergence between cattle groups was only significant for Y-chromosome markers (ΦCT = 0.209). At the mitochondrial level, African sires resembled an undifferentiated population with individuals explaining 94.3% of the total variance. Whatever the markers considered, the highest contributions to total Nei's gene diversity and allelic richness were found in West African cattle. Genetic structuring had no effect on patterns of contributions to diversity.
Collapse
Affiliation(s)
- I Álvarez
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - L Pérez-Pardal
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - A Traoré
- INERA, Ouagadougou, Burkina Faso
| | | | - I Fernández
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| | - A Soudré
- Université de Koudougou, Koudougou, Burkina Faso
| | - S Diarra
- IPR-IFRA Bamako (Mali), Koulikoro, Bamako
| | - M Sanou
- INERA, Ouagadougou, Burkina Faso
| | - H Boussini
- African Union Interafrican Bureau for Animal Resources, Nairobi, Kenya
| | - F Goyache
- Área de Genética y Reproducción Animal, SERIDA, Camino de Rioseco, Gijón, Spain
| |
Collapse
|
7
|
Álvarez I, Pérez-Pardal L, Traoré A, Fernández I, Goyache F. Lack of specific alleles for the bovine chemokine (C-X-C) receptor type 4 (CXCR4) gene in West African cattle questions its role as a candidate for trypanotolerance. INFECTION GENETICS AND EVOLUTION 2016; 42:30-3. [DOI: 10.1016/j.meegid.2016.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/06/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
|