1
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Tian Y, An J, Zhang X, Di J, He J, Yasen A, Ma Y, Sailikehan G, Huang X, Tian K. Genome-Wide Scan for Copy Number Variations in Chinese Merino Sheep Based on Ovine High-Density 600K SNP Arrays. Animals (Basel) 2024; 14:2897. [PMID: 39409846 PMCID: PMC11476046 DOI: 10.3390/ani14192897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Sheep are a vital species in the global agricultural economy, providing essential resources such as meat, milk, and wool. Merino sheep (Junken type) are a key breed of fine wool sheep in China. However, research on fine wool traits has largely overlooked the role of SNPs and their association with phenotypes. Copy number variations (CNVs) have emerged as one of the most important sources of genetic variation, influencing phenotypic traits by altering gene expression and dosage. To generate a comprehensive CNVR map of the ovine genome, we conducted genome-wide CNV detection using genotyping data from 285 fine wool sheep. This analysis revealed 656 CNVRs, including 628 on autosomes and 28 on the X chromosome, covering a total of 43.9 Mbs of the sheep genome. The proportion of CNVRs varied across chromosomes, from 0.45% on chromosome 26 to 3.72% on chromosome 10. Functional annotation through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted significantly enriched GO terms, including odorant binding, ATP binding, and sulfuric ester hydrolase activity. The KEGG analysis identified involvement in pathways such as neuroactive ligand-receptor interaction, axon guidance, ECM-receptor interaction, the one-carbon pool by folate, and focal adhesion (p < 0.05). To validate these CNVRs, we performed quantitative real-time PCR experiments to verify copy number predictions made by PennCNV software (v1.0.5). Out of 11 selected CNVRs with predicted gain, loss, or gain-loss statuses, 8 (IDs 68, 156, 201, 284, 307, 352, 411, 601) were successfully confirmed. This study marks a significant step forward in mapping CNVs in the ovine genome and offers a valuable resource for future research on genetic variation in sheep.
Collapse
Affiliation(s)
- Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Jing An
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
- College of Animal Science and Technology, Northwest Agriculture and Forest University, Yangling, Xianyang 712100, China
| | - Xinning Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jiang Di
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Junmin He
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ayinuer Yasen
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Yanpin Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Gaohaer Sailikehan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Li T, Jin M, Wang H, Zhang W, Yuan Z, Wei C. Whole-Genome Scanning for Selection Signatures Reveals Candidate Genes Associated with Growth and Tail Length in Sheep. Animals (Basel) 2024; 14:687. [PMID: 38473071 DOI: 10.3390/ani14050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Compared to Chinese indigenous sheep, Western sheep have rapid growth rate, larger physique, and higher meat yield. These excellent Western sheep were introduced into China for crossbreeding to expedite the enhancement of production performance and mutton quality in local breeds. Here, we investigated population genetic structure and genome-wide selection signatures among the Chinese indigenous sheep and the introduced sheep based on whole-genome resequencing data. The PCA, N-J tree and ADMIXTURE results showed significant genetic difference between Chinese indigenous sheep and introduced sheep. The nucleotide diversity (π) and linkage disequilibrium (LD) decay results indicated that the genomic diversity of introduced breeds were lower. Then, Fst & π ratio, XP-EHH, and de-correlated composite of multiple signals (DCMS) methods were used to detect the selection signals. The results showed that we identified important candidate genes related to growth rate and body size in the introduced breeds. Selected genes with stronger selection signatures are associated with growth rate (CRADD), embryonic development (BVES, LIN28B, and WNT11), body size (HMGA2, MSRB3, and PTCH1), muscle development and fat metabolism (MSTN, PDE3A, LGALS12, GGPS1, and SAR1B), wool color (ASIP), and hair development (KRT71, KRT74, and IRF2BP2). Thus, these genes have the potential to serve as candidate genes for enhancing the growth traits of Chinese indigenous sheep. We also identified tail-length trait-related candidate genes (HOXB13, LIN28A, PAX3, and VEGFA) in Chinese long-tailed breeds. Among these genes, HOXB13 is the main candidate gene for sheep tail length phenotype. LIN28A, PAX3, and VEGFA are related to embryonic development and angiogenesis, so these genes may be candidate genes for sheep tail type traits. This study will serve as a foundation for further genetic improvement of Chinese indigenous sheep and as a reference for studies related to growth and development of sheep.
Collapse
Affiliation(s)
- Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Arias KD, Pablo Gutiérrez J, Fernandez I, Menéndez-Arias NA, Álvarez I, Goyache F. Segregation patterns and inheritance rate of copy number variations regions assessed in a Gochu Asturcelta pig pedigree. Gene X 2023; 854:147111. [PMID: 36509293 DOI: 10.1016/j.gene.2022.147111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Copy Number Variation Regions (CNVR) were subjected to pedigree analysis to contribute to the understanding of their segregation patterns. Up to 492 Gochu Asturcelta pig individuals forming 478 different parents-offspring trios (61 different families) were genotyped using the Axiom_PigHDv1 Array (658,692 SNPs). CNVR calling, performed using two different platforms (PennCNV and QuantiSNP), allowed to identify a total of 344 candidate CNVR on the 18 porcine autosomes covering about 106.8 Mb of the pig genome. Sixty-nine CNVR were identified, to some extent, in both the parents and the offspring and were classified as segregating CNVR. The other candidate CNVR were called in one or more progeny but in neither parent and classified either as singleton or recurrent de novo CNVR. Segregating CNVR were, on average, larger and more frequent than the recurrent de novo CNVR (444.8 kb vs 287.9 kb long and 34 vs 5 individuals, respectively). In any case, segregating CNVR did not conform to strict Mendelian inheritance patterns: estimates of average paternal and maternal transmission rates ranged from 11.0 % to 13.4 % and mean inheritance rate was below 21 %. This issue should be carefully considered when interpreting the results of CNV studies. Segregating CNVR, present across generations, are unlikely to be artifacts or false positives and can be hypothesized to be important at the population level.
Collapse
Affiliation(s)
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | - Félix Goyache
- SERIDA-Deva, Camino de Rioseco 1225, 33394-Gijón, Spain.
| |
Collapse
|
5
|
Identification of candidate genomic regions for thermogelled egg yolk traits based on a genome-wide association study. Poult Sci 2022; 102:102402. [PMID: 36610105 PMCID: PMC9850194 DOI: 10.1016/j.psj.2022.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Egg yolk texture is an important indicator for evaluating egg yolk quality. Genetic markers associated with economic traits predict genomes and facilitate mining for potential genes. Numerous genome-wide association studies have been conducted on egg traits. However, studies on the genetic basis of thermogelled yolk texture are still lacking. The aim of the present study was to find significant single nucleotide polymorphism (SNP) sites and candidate genes related to thermogelled yolk texture in Hetian Dahei chicken (HTHD) flocks that can be used as genetic markers. Five traits, including hardness, cohesiveness, gumminess, chewiness, and resilience, had low heritability (0.044-0.078). Ten genes, including U6, FSHR, PKDCC, SLC7A11, TIMM9, ARID4A, PSMA3, ACTR10, EML4, and SLC35F4 may control the hardness of the thermogelled egg yolks. In addition, 12 SNPs associated with cohesiveness were identified. RELCH located on GGA2 participates in cholesterol transport. The candidate gene LRRK2, which is associated with gumminess, influences the concentrations of very low-density lipoprotein in blood. Eight SNPs associated with resilience were identified, mainly on GGA3 and GCA28. In total, 208 SNPs associated with chewiness were identified, and 159 candidate genes, which were mainly involved in proteasome-mediated ubiquitin-dependent protein catabolic process, negative regulation of transport, lipid droplet organization, and vehicle docking involved in exocytosis, were found near these regions. Thermogel egg yolk texture is a complex phenotype controlled by multiple genes. Based on heritability assays and GWAS results, there is a genetic basis for the texture of thermogelled egg yolks. We identified a series of SNPs associated with yolk texture and candidate genes. Our result provides a theoretical basis for breeding high-quality egg yolk using molecular marker-assisted selection and could facilitate the development of novel traits.
Collapse
|
6
|
Selionova M, Aibazov M, Mamontova T, Malorodov V, Sermyagin A, Zinovyeva N, Easa AA. Genome-wide association study of live body weight and body conformation traits in young Karachai goats. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Hu L, Zhang L, Li Q, Liu H, Xu T, Zhao N, Han X, Xu S, Zhao X, Zhang C. Genome-wide analysis of CNVs in three populations of Tibetan sheep using whole-genome resequencing. Front Genet 2022; 13:971464. [PMID: 36160022 PMCID: PMC9490000 DOI: 10.3389/fgene.2022.971464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Copy number variation (CNV), an important source of genomic structural variation, can disturb genetic structure, dosage, regulation and expression, and is associated with phenotypic diversity and adaptation to local environments in mammals. In the present study, 24 resequencing datasets were used to characterize CNVs in three ecotypic populations of Tibetan sheep and assess CNVs related to domestication and adaptation in Qinghai-Tibetan Plateau. A total of 87,832 CNV events accounting for 0.3% of the sheep genome were detected. After merging the overlapping CNVs, 2777 CNV regions (CNVRs) were obtained, among which 1098 CNVRs were shared by the three populations. The average length of these CNVRs was more than 3 kb, and duplication events were more frequent than deletions. Functional analysis showed that the shared CNVRs were significantly enriched in 56 GO terms and 18 KEGG pathways that were mainly concerned with ABC transporters, olfactory transduction and oxygen transport. Moreover, 188 CNVRs overlapped with 97 quantitative trait loci (QTLs), such as growth and carcass QTLs, immunoglobulin QTLs, milk yield QTLs and fecal egg counts QTLs. PCDH15, APP and GRID2 overlapped with body weight QTLs. Furthermore, Vst analysis showed that RUNX1, LOC101104348, LOC105604082 and PAG11 were highly divergent between Highland-type Tibetan Sheep (HTS) and Valley-type Tibetan sheep (VTS), and RUNX1 and LOC101111988 were significantly differentiated between VTS and Oura-type Tibetan sheep (OTS). The duplication of RUNX1 may facilitate the hypoxia adaptation of OTS and HTS in Qinghai-Tibetan Plateau, which deserves further research in detail. In conclusion, for the first time, we represented the genome-wide distribution characteristics of CNVs in Tibetan sheep by resequencing, and provided a valuable genetic variation resource, which will facilitate the elucidation of the genetic basis underlying the distinct phenotypic traits and local adaptation of Tibetan sheep.
Collapse
Affiliation(s)
- Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hongjin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tianwei Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Na Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xueping Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining, China
| | - Shixiao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- *Correspondence: Cunfang Zhang,
| |
Collapse
|
8
|
Moradi MH, Mahmodi R, Farahani AHK, Karimi MO. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds. Sci Rep 2022; 12:14286. [PMID: 35996004 PMCID: PMC9395407 DOI: 10.1038/s41598-022-18571-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Roqiah Mahmodi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | | | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Herat University, Herat, Afghanistan
| |
Collapse
|
9
|
Identification and Characterization of Copy Number Variations Regions in West African Taurine Cattle. Animals (Basel) 2022; 12:ani12162130. [PMID: 36009719 PMCID: PMC9405125 DOI: 10.3390/ani12162130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 106 West African taurine cattle belonging to the Lagunaire breed of Benin (33), the N’Dama population of Burkina Faso (48), and N’Dama cattle sampled in Congo (25) were analyzed for Copy Number Variations (CNVs) using the BovineHDBeadChip of Illumina and two different CNV calling programs: PennCNV and QuantiSNP. Furthermore, 89 West African zebu samples (Bororo cattle of Mali and Zebu Peul sampled in Benin and Burkina Faso) were used as an outgroup to ensure that analyses reflect the taurine cattle genomic background. Analyses identified 307 taurine-specific CNV regions (CNVRs), covering about 56 Mb on all bovine autosomes. Gene annotation enrichment analysis identified a total of 840 candidate genes on 168 taurine-specific CNVRs. Three different statistically significant functional term annotation clusters (from ACt1 to ACt3) involved in the immune function were identified: ACt1 includes genes encoding lipocalins, proteins involved in the modulation of immune response and allergy; ACt2 includes genes encoding coding B-box-type zinc finger proteins and butyrophilins, involved in innate immune processes; and Act3 includes genes encoding lectin receptors, involved in the inflammatory responses to pathogens and B- and T-cell differentiation. The overlap between taurine-specific CNVRs and QTL regions associated with trypanotolerant response and tick-resistance was relatively low, suggesting that the mechanisms underlying such traits may not be determined by CNV alterations. However, four taurine-specific CNVRs overlapped with QTL regions associated with both traits on BTA23, therefore suggesting that CNV alterations in major histocompatibility complex (MHC) genes can partially explain the existence of genetic mechanisms shared between trypanotolerance and tick resistance in cattle. This research contributes to the understanding of the genomic features of West African taurine cattle.
Collapse
|
10
|
Taghizadeh S, Gholizadeh M, Rahimi-Mianji G, Moradi MH, Costilla R, Moore S, Di Gerlando R. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci Rep 2022; 12:8834. [PMID: 35614300 PMCID: PMC9132911 DOI: 10.1038/s41598-022-12778-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) are a type of genetic polymorphism which contribute to phenotypic variation in several species, including livestock. In this study, we used genomic data of 192 animals from 3 Iranian sheep breeds including 96 Baluchi sheep and 47 Lori-Bakhtiari sheep as fat-tailed breeds and 47 Zel sheep as thin-tailed sheep breed genotyped with Illumina OvineSNP50K Beadchip arrays. Also, for association test, 70 samples of Valle del Belice sheep were added to the association test as thin-tailed sheep breed. PennCNV and CNVRuler software were, respectively, used to study the copy number variation and genomic association analyses. We detected 573 and 242 CNVs in the fat and thin tailed breeds, respectively. In terms of CNV regions (CNVRs), these represented 328 and 187 CNVRs that were within or overlapping with 790 known Ovine genes. The CNVRs covered approximately 73.85 Mb of the sheep genome with average length 146.88 kb, and corresponded to 2.6% of the autosomal genome sequence. Five CNVRs were randomly chosen for validation, of which 4 were experimentally confirmed using Real time qPCR. Functional enrichment analysis showed that genes harbouring CNVs in thin-tailed sheep were involved in the adaptive immune response, regulation of reactive oxygen species biosynthetic process and response to starvation. In fat-tailed breeds these genes were involved in cellular protein modification process, regulation of heart rate, intestinal absorption, olfactory receptor activity and ATP binding. Association test identified one copy gained CNVR on chromosomes 6 harbouring two protein-coding genes HGFAC and LRPAP1. Our findings provide information about genomic structural changes and their association to the interested traits including fat deposition and environmental compatibility in sheep.
Collapse
Affiliation(s)
- Shadan Taghizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Roy Costilla
- Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Stephen Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Rosalia Di Gerlando
- Dipartimento Di Scienze Agrarie, Alimentari E Forestali, Università Degli Studi Di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|