1
|
Chen Y, Hu H, Atashi H, Grelet C, Wijnrocx K, Lemal P, Gengler N. Genetic analysis of milk citrate predicted by milk mid-infrared spectra of Holstein cows in early lactation. J Dairy Sci 2024; 107:3047-3061. [PMID: 38056571 DOI: 10.3168/jds.2023-23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Milk citrate is regarded as an early biomarker of negative energy balance in dairy cows during early lactation and serves as a suitable candidate phenotype for genomic selection due to its wide availability across a large number of cows through milk mid-infrared spectra prediction. However, its genetic background is not well known. Therefore, the objectives of this study were to (1) analyze the genetic parameters of milk citrate; (2) identify genomic regions associated with milk citrate; and (3) analyze the functional annotation of candidate genes and quantitative trait loci (QTL) related to milk citrate in Walloon Holstein cows. In total, 134,517 test-day milk-citrate phenotypes (mmol/L) collected within the first 50 d in milk on 52,198 Holstein cows were used. These milk-citrate phenotypes, predicted by milk mid-infrared spectra, were divided into 3 traits according to the first (citrate1), second (citrate2), and third to fifth parity (citrate3+). Genomic information for 566,170 SNPs was available for 4,479 animals. A multiple-trait repeatability model was used to estimate genetic parameters. A single-step GWAS was used to identify candidate genes for citrate and post-GWAS analysis was done to investigate the relationship and function of the identified candidate genes. The heritabilities estimated for citrate1, citrate2, and citrate3+ were 0.40, 0.37, and 0.35, respectively. The genetic correlations among the 3 traits ranged from 0.98 to 0.99. The genomic correlations among the 3 traits were also close to 1.00 across the genomic regions (1 Mb) in the whole genome, which means that citrate can be considered as a single trait in the first 5 parities. In total, 603 significant SNPs located on 3 genomic regions (chromosome 7, 68.569-68.575 Mb; chromosome 14, 0.15-1.90 Mb; and chromosome 20, 54.00-64.28 Mb), were identified to be associated with milk citrate. We identified 89 candidate genes including GPT, ANKH, PPP1R16A, and 32 QTL reported in the literature related to the identified significant SNPs. These identified QTL were mainly reported associated with milk fatty acids and metabolic diseases in dairy cows. This study suggests that milk citrate in Holstein cows is highly heritable and has the potential to be used as an early proxy for the negative energy balance of Holstein cows in a breeding objective.
Collapse
Affiliation(s)
- Yansen Chen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| | - Hongqing Hu
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - Hadi Atashi
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran
| | - Clément Grelet
- Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
| | - Katrien Wijnrocx
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - Pauline Lemal
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - Nicolas Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Schiavo G, Bertolini F, Bovo S, Galimberti G, Muñoz M, Bozzi R, Čandek-Potokar M, Óvilo C, Fontanesi L. Identification of population-informative markers from high-density genotyping data through combined feature selection and machine learning algorithms: Application to European autochthonous and cosmopolitan pig breeds. Anim Genet 2024; 55:193-205. [PMID: 38191264 DOI: 10.1111/age.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Large genotyping datasets, obtained from high-density single nucleotide polymorphism (SNP) arrays, developed for different livestock species, can be used to describe and differentiate breeds or populations. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this study, we applied the Boruta algorithm, a wrapper of the machine learning random forest algorithm, on a database of 23 European pig breeds (20 autochthonous and three cosmopolitan breeds) genotyped with a 70k SNP chip, to pre-select informative SNPs. To identify different sets of SNPs, these pre-selected markers were then ranked with random forest based on their mean decrease accuracy and mean decrease gene indexes. We evaluated the efficiency of these subsets for breed classification and the usefulness of this approach to detect candidate genes affecting breed-specific phenotypes and relevant production traits that might differ among breeds. The lowest overall classification error (2.3%) was reached with a subpanel including only 398 SNPs (ranked based on their mean decrease accuracy), with no classification error in seven breeds using up to 49 SNPs. Several SNPs of these selected subpanels were in genomic regions in which previous studies had identified signatures of selection or genes associated with morphological or production traits that distinguish the analysed breeds. Therefore, even if these approaches have not been originally designed to identify signatures of selection, the obtained results showed that they could potentially be useful for this purpose.
Collapse
Affiliation(s)
- Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences 'Paolo Fortunati', University of Bologna, Bologna, Italy
| | - María Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Riccardo Bozzi
- Animal Science Division, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | | | - Cristina Óvilo
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Chen Y, Atashi H, Mota RR, Grelet C, Vanderick S, Hu H, Gengler N. Validating genomic prediction for nitrogen efficiency index and its composition traits of Holstein cows in early lactation. J Anim Breed Genet 2023; 140:695-706. [PMID: 37571877 DOI: 10.1111/jbg.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Nitrogen (N) use efficiency (NUE) is an economically important trait for dairy cows. Recently, we proposed a new N efficiency index (NEI), that simultaneously considers both NUE and N pollution. This study aimed to validate the genomic prediction for NEI and its composition traits and investigate the relationship between SNP effects estimated directly from NEI and indirectly from its composition traits. The NEI composition included genomic estimated breeding value of N intake (NINT), milk true protein N (MTPN) and milk urea N yield. The edited data were 132,899 records on 52,064 cows distributed in 773 herds. The pedigree contained 122,368 animals. Genotypic data of 566,294 SNP was available for 4514 individuals. A total of 4413 cows (including 181 genotyped) and 56 bulls (including 32 genotyped) were selected as the validation populations. The linear regression method was used to validate the genomic prediction of NEI and its composition traits using best linear unbiased prediction (BLUP) and single-step genomic BLUP (ssGBLUP). The mean theoretical accuracies of validation populations obtained from ssGBLUP were higher than those obtained from BLUP for both NEI and its composition traits, ranging from 0.57 (MTPN) to 0.72 (NINT). The highest mean prediction accuracies for NEI and its composition traits were observed for the genotyped cows estimated under ssGBLUP, ranging from 0.48 (MTPN) to 0.66 (NINT). Furthermore, the SNP effects estimated from NEI composition traits, multiplied by the relative weight were the same as those estimated directly from NEI. This study preliminary showed that genomic prediction can be used for NEI, however, we acknowledge the need for further validation of this result in a larger dataset. Moreover, the SNP effects of NEI can be indirectly calculated using the SNP effects estimated from its composition traits. This study provided a basis for adding genomic information to establish NEI as part of future routine genomic evaluation programs.
Collapse
Affiliation(s)
- Y Chen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| | - H Atashi
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
- Department of Animal Science, Shiraz University, Shiraz, Iran
| | - R R Mota
- Council on Dairy Cattle Breeding, Maryland, Bowie, USA
| | - C Grelet
- Walloon Agricultural Research Center (CRA-W), Gembloux, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| | - H Hu
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| |
Collapse
|
4
|
Bhowmik N, Seaborn T, Ringwall KA, Dahlen CR, Swanson KC, Hulsman Hanna LL. Genetic Distinctness and Diversity of American Aberdeen Cattle Compared to Common Beef Breeds in the United States. Genes (Basel) 2023; 14:1842. [PMID: 37895190 PMCID: PMC10606367 DOI: 10.3390/genes14101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.
Collapse
Affiliation(s)
- Nayan Bhowmik
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Travis Seaborn
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kris A. Ringwall
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND 58601, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
5
|
Zhao C, Wang D, Teng J, Yang C, Zhang X, Wei X, Zhang Q. Breed identification using breed-informative SNPs and machine learning based on whole genome sequence data and SNP chip data. J Anim Sci Biotechnol 2023; 14:85. [PMID: 37259083 DOI: 10.1186/s40104-023-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/05/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Breed identification is useful in a variety of biological contexts. Breed identification usually involves two stages, i.e., detection of breed-informative SNPs and breed assignment. For both stages, there are several methods proposed. However, what is the optimal combination of these methods remain unclear. In this study, using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project, we compared the combinations of three methods (Delta, FST, and In) for breed-informative SNP detection and five machine learning methods (KNN, SVM, RF, NB, and ANN) for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs. In addition, we evaluated the accuracy of breed identification using SNP chip data of different densities. RESULTS We found that all combinations performed quite well with identification accuracies over 95% in all scenarios. However, there was no combination which performed the best and robust across all scenarios. We proposed to integrate the three breed-informative detection methods, named DFI, and integrate the three machine learning methods, KNN, SVM, and RF, named KSR. We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99% in most cases and was very robust in all scenarios. The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases. CONCLUSIONS The current study showed that the combination of DFI and KSR was the optimal strategy. Using sequence data resulted in higher accuracies than using chip data in most cases. However, the differences were generally small. In view of the cost of genotyping, using chip data is also a good option for breed identification.
Collapse
Affiliation(s)
- Changheng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Cheng Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianming Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Miao J, Chen Z, Zhang Z, Wang Z, Wang Q, Zhang Z, Pan Y. A web tool for the global identification of pig breeds. Genet Sel Evol 2023; 55:18. [PMID: 36944938 PMCID: PMC10029154 DOI: 10.1186/s12711-023-00788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Natural and artificial selection for more than 9000 years have led to a variety of domestic pig breeds. Accurate identification of pig breeds is important for breed conservation, sustainable breeding, pork traceability, and local resource registration. RESULTS We evaluated the performance of four selectors and six classifiers for breed identification using a wide range of pig breeds (N = 91). The internal cross-validation and external independent testing showed that partial least squares regression (PLSR) was the most effective selector and partial least squares-discriminant analysis (PLS-DA) was the most powerful classifier for breed identification among many breeds. Five-fold cross-validation indicated that using PLSR as the selector and PLS-DA as the classifier to discriminate 91 pig breeds yielded 98.4% accuracy with only 3K single nucleotide polymorphisms (SNPs). We also constructed a reference dataset with 124 pig breeds and used it to develop the web tool iDIGs ( http://alphaindex.zju.edu.cn/iDIGs_en/ ) as a comprehensive application for global pig breed identification. iDIGs allows users to (1) identify pig breeds without a reference population and (2) design small panels to discriminate several specific pig breeds. CONCLUSIONS In this study, we proved that breed identification among a wide range of pig breeds is feasible and we developed a web tool for such pig breed identification.
Collapse
Affiliation(s)
- Jian Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zitao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| |
Collapse
|
7
|
Chen Y, Atashi H, Grelet C, Mota RR, Vanderick S, Hu H, Gengler N. Genome-wide association study and functional annotation analyses for nitrogen efficiency index and its composition traits in dairy cattle. J Dairy Sci 2023; 106:3397-3410. [PMID: 36894424 DOI: 10.3168/jds.2022-22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/24/2022] [Indexed: 03/09/2023]
Abstract
The aims of this study were (1) to identify genomic regions associated with a N efficiency index (NEI) and its composition traits and (2) to analyze the functional annotation of identified genomic regions. The NEI included N intake (NINT1), milk true protein N (MTPN1), milk urea N yield (MUNY1) in primiparous cattle, and N intake (NINT2+), milk true protein N (MTPN2+), and milk urea N yield (MUNY2+) in multiparous cattle (2 to 5 parities). The edited data included 1,043,171 records on 342,847 cows distributed in 1,931 herds. The pedigree consisted of 505,125 animals (17,797 males). Data of 565,049 SNPs were available for 6,998 animals included in the pedigree (5,251 females and 1,747 males). The SNP effects were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of about 240 kb) was calculated. The top 3 genomic regions explaining the largest rate of the total additive genetic variance of the NEI and its composition traits were selected for candidate gene identification and quantitative trait loci (QTL) annotation. The selected genomic regions explained from 0.17% (MTPN2+) to 0.58% (NEI) of the total additive genetic variance. The largest explanatory genomic regions of NEI, NINT1, NINT2+, MTPN1, MTPN2+, MUNY1, and MUNY2+ were Bos taurus autosome 14 (1.52-2.09 Mb), 26 (9.24-9.66 Mb), 16 (75.41-75.51 Mb), 6 (8.73-88.92 Mb), 6 (8.73-88.92 Mb), 11 (103.26-103.41 Mb), 11 (103.26-103.41 Mb). Based on the literature, gene ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction, 16 key candidate genes were identified for NEI and its composition traits, which are mainly expressed in the milk cell, mammary, and liver tissues. The number of enriched QTL related to NEI, NINT1, NINT2+, MTPN1, and MTPN2+ were 41, 6, 4, 11, 36, 32, and 32, respectively, and most of them were related to the milk, health, and production classes. In conclusion, this study identified genomic regions associated with NEI and its composition traits, and identified key candidate genes describing the genetic mechanisms of N use efficiency-related traits. Furthermore, the NEI reflects not only its composition traits but also the interactions among them.
Collapse
Affiliation(s)
- Y Chen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| | - H Atashi
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran
| | - C Grelet
- Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
| | - R R Mota
- Council on Dairy Cattle Breeding, Bowie, MD 20716
| | - S Vanderick
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - H Hu
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | | | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| |
Collapse
|
8
|
Wilmot H, Druet T, Hulsegge I, Gengler N, Calus M. Estimation of inbreeding, between-breed genomic relatedness and definition of sub-populations in red-pied cattle breeds. Animal 2023; 17:100793. [PMID: 37087997 DOI: 10.1016/j.animal.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Currently, enhancing the collaboration between related breeds is of main importance to increase the competitivity and the sustainability of local breeds. One type of collaboration is the development of an across-breed reference population that will allow a better management of local breeds. For this purpose, the genomic relatedness between the local target breed and possible breeds to be included in the reference population should be estimated. In Europe, there are several local red-pied cattle breeds that would benefit from this kind of collaboration. However, how different red-pied cattle breeds from the Benelux are related to each other and can collaborate is still unclear. The objectives of this study were therefore: (1) to estimate the level of inbreeding of the East Belgian Red and White (EBRW), the Red-Pied of the Ösling (RPO) and Dutch red-pied cattle breeds; (2) to determine the genomic relatedness of several red-pied cattle breeds, with a special focus on two endangered breeds: the EBRW and the RPO, and (3) based on the second objective, to detect animals from other breeds that were genomically close enough to be considered as advantageous in the creation of an across-breed reference population of EBRW or RPO. The estimated inbreeding levels based on runs of homozygosity were relatively low for almost all the studied breeds and especially for the EBRW and RPO. This would imply that inbreeding is currently not an issue in these two endangered breeds and that their sustainability is not threatened by their level of inbreeding. The results from the principal component analysis, the phylogenetic tree and the clustering all highlighted that the EBRW and RPO breeds were included in the genomic continuum of the studied red-pied cattle breeds and can be therefore considered as genomically close to Dutch red-pied cattle breeds, highlighting the possibility of a collaboration between these breeds. Especially, EBRW animals were closely related to Deep Red and Improved Red animals while, to a lesser extent, the RPO animals were closely related to the Meuse-Rhine-Yssel breed. Based on these results, we could use distance measures, based either on the principal component analysis or clustering, to detect animals from Dutch breeds that were genomically closest to the EBRW or RPO breeds. This will finally allow the building of an across-breed reference population for EBRW or RPO for further genomic evaluations, considering these genomically closest animals from other breeds.
Collapse
|
9
|
Varga L, Edviné EM, Hudák P, Anton I, Pálinkás-Bodzsár N, Zsolnai A. Balancing at the Borderline of a Breed: A Case Study of the Hungarian Short-Haired Vizsla Dog Breed, Definition of the Breed Profile Using Simple SNP-Based Methods. Genes (Basel) 2022; 13:2022. [PMID: 36360261 PMCID: PMC9690546 DOI: 10.3390/genes13112022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/16/2023] Open
Abstract
The aim of this study was to determine the breed boundary of the Hungarian Short-haired Vizsla (HSV) dog breed. Seventy registered purebred HSV dogs were genotyped on approximately 145,000 SNPs. Principal Component Analysis (PCA) and Admixture analysis certified that they belong to the same population. The outer point of the breed demarcation was a single Hungarian Wire-haired Vizsla (HWV) individual, which was the closest animal genetically to the HSV population in the PCA analysis. Three programs were used for the breed assignment calculations, including the widely used GeneClass2.0 software and two additional approaches developed here: the 'PCA-distance' and 'IBS-central' methods. Both new methods calculate a single number that represents how closely a dog fits into the actual reference population. The former approach calculates this number based on the PCA distances from the median of HSV animals. The latter calculates it from identity by state (IBS) data, measuring the distance from a central animal that is the best representative of the breed. Having no mixed-breed dogs with known HSV genome proportion, admixture animals were simulated by using data of HSV and HWV individuals to calibrate the inclusion/exclusion probabilities for the assignment. The numbers generated from these relatively simple calculations can be used by breeders and clubs to keep their populations under genetic supervision.
Collapse
Affiliation(s)
- László Varga
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent István Campus, 2100 Gödöllő, Hungary
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, 2100 Gödöllő, Hungary
| | - Erika Meleg Edviné
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, 2100 Gödöllő, Hungary
| | - Péter Hudák
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, 2100 Gödöllő, Hungary
| | - István Anton
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053 Herceghalom, Hungary
| | - Nóra Pálinkás-Bodzsár
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, 2100 Gödöllő, Hungary
| | - Attila Zsolnai
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, 2100 Gödöllő, Hungary
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053 Herceghalom, Hungary
| |
Collapse
|
10
|
Atashi H, Bastin C, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for selected cheese-making properties in Dual-Purpose Belgian Blue cows. J Dairy Sci 2022; 105:8972-8988. [PMID: 36175238 DOI: 10.3168/jds.2022-21780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to estimate genetic parameters and identify genomic region(s) associated with selected cheese-making properties (CMP) in Dual-Purpose Belgian Blue (DPBB) cows. Edited data were 46,301 test-day records of milk yield, fat percentage, protein percentage, casein percentage, milk calcium content (CC), coagulation time (CT), curd firmness after 30 min from rennet addition (a30), and milk titratable acidity (MTA) collected from 2014 to 2020 on 4,077 first-parity (26,027 test-day records), and 3,258 second-parity DPBB cows (20,274 test-day records) distributed in 124 herds in the Walloon Region of Belgium. Data of 28,266 SNP, located on 29 Bos taurus autosomes (BTA) of 1,699 animals were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 25 consecutive SNPs (with an average size of ∼2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Heritability estimates for the included CMP ranged from 0.19 (CC) to 0.50 (MTA), and 0.24 (CC) to 0.41 (MTA) in the first and second parity, respectively. The genetic correlation estimated between CT and a30 varied from -0.61 to -0.41 and from -0.55 to -0.38 in the first and second lactations, respectively. Negative genetic correlations were found between CT and milk yield and composition, while those estimated between curd firmness and milk composition were positive. Genome-wide association analyses results identified 4 genomic regions (BTA1, BTA3, BTA7, and BTA11) associated with the considered CMP. The identified genomic regions showed contrasting results between parities and among the different stages of each parity. It suggests that different sets of candidate genes underlie the phenotypic expression of the considered CMP between parities and lactation stages of each parity. The findings of this study can be used for future implementation and use of genomic evaluation to improve the cheese-making traits in DPBB cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran.
| | - C Bastin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), Rue d'Egmont 5, B-1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
11
|
Wilmot H, Glorieux G, Hubin X, Gengler N. A genomic breed assignment test for traceability of meat of Dual-Purpose Blue. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association for milk urea concentration in Dual-Purpose Belgian Blue cows. J Anim Breed Genet 2022; 139:710-722. [PMID: 35834354 DOI: 10.1111/jbg.12732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
Abstract
The objectives of this study were to estimate genetic parameters and identify genomic regions associated with milk urea concentration (MU) in Dual-Purpose Belgian Blue (DPBB) cows. The data were 29,693 test-day records of milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), protein percentage (PP) and MU collected between 2014 and 2020 on 2498 first parity cows (16,935 test-day records) and 1939 second-parity cows (12,758 test-day records) from 49 herds in the Walloon Region of Belgium. Data of 28,266 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA), on 1699 animals (639 males and 1060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method using a single chain of 100,000 iterations after a burn-in period of 20,000. SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by windows of 25 consecutive SNPs (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. The mean (SD) of MU was 22.89 (10.07) and 22.35 (10.07) mg/dl for first and second parity, respectively. The mean (SD) heritability estimates for daily MU were 0.18 (0.01) and 0.22 (0.02), for first and second parity, respectively. The mean (SD) genetic correlations between daily MU and MY, FY, PY, FP and PP were -0.05 (0.09), -0.07 (0.11), -0.03 (0.13), -0.05 (0.08) and -0.03 (0.11) for first parity, respectively. The corresponding values estimated for second parity were 0.02 (0.10), -0.02 (0.09), 0.02 (0.08), -0.08 (0.06) and -0.05 (0.05). The genome-wide association analyses identified three genomic regions (BTA2, BTA3 and BTA13) associated with MU. The identified regions showed contrasting results between parities and among different stages within each parity. This suggests that different groups of candidate genes underlie the phenotypic expression of MU between parities and among different lactation stages within a parity. The results of this study can be used for future implementation and use of genomic evaluation to reduce MU in DPBB cows.
Collapse
Affiliation(s)
- Hadi Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Department of Animal Science, Shiraz University, Shiraz, Iran
| | - Yansen Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hélène Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,National Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium
| | - Sylvie Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | | | - Nicolas Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
13
|
Atashi H, Wilmot H, Gengler N. The pattern of linkage disequilibrium in Dual-Purpose Belgian Blue cattle. J Anim Breed Genet 2021; 139:320-329. [PMID: 34859921 DOI: 10.1111/jbg.12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Quantifying the level of linkage disequilibrium (LD), non-random association of alleles at two or more loci, is important to determine the number of markers needed for genomic selection. The aims of this study were to evaluate the extent of LD in Dual-Purpose Belgian Blue (DPBB) and to compare the level of LD in DPBB with that of Walloon Holstein. Data of 28,427 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA), of 639 DPBB and 398 Holstein bulls were used. The level of LD between pairwise SNPs separated by up to 10 Mb was evaluated, separately for each breed, using the squared correlation of the alleles at two loci. The analysis of molecular variance showed that the percentage of variation within populations (85.48%) was higher than between populations (14.52%). However, permutation tests showed a significant genetic differentiation between the two studied populations (p < .01). The average LD found between adjacent SNP pairs in DPBB (0.16 (SD = 0.22)) was generally lower than in Holstein (0.23 (SD = 0.27)). The proportion of SNPs in useful LD (r2 > 0.30) within a genomic distance of ≤0.10 Mb between SNPs was 18.58% and 28.23% in DPBB and Holstein bulls, respectively. In both breeds, the effective population size decreased over generations; however, the decline was greater in DPBB than that in Holstein. Based on results, it can be concluded that at least 68,000 SNPs are needed for implementing genomic selection in DPBB cattle with enough accuracy.
Collapse
Affiliation(s)
- Hadi Atashi
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,Department of Animal Science, Shiraz University, Shiraz, Iran
| | - Hélène Wilmot
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,National Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium
| | - Nicolas Gengler
- TERRA Research and Training Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|