1
|
Turbill C, Walker M, Boardman W, Martin JM, McKeown A, Meade J, Welbergen JA. Torpor use in the wild by one of the world's largest bats. Proc Biol Sci 2024; 291:20241137. [PMID: 38981525 PMCID: PMC11335021 DOI: 10.1098/rspb.2024.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.
Collapse
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Melissa Walker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - John M. Martin
- Taronga Conservation Society, Mosman, New South Wales, Australia
| | - Adam McKeown
- CSIRO Land & Water, Atherton, Queensland, Australia
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
2
|
Sun YQ, Zhang YY, Liu MC, Chen JJ, Li TT, Liu YN, Zhang LY, Wang T, Yu LJ, Che TL, Tang T, Xu Q, Lv CL, Jiang BG, Golding N, Mehlman ML, Hay SI, Fang LQ, Liu W. Mapping the distribution of Nipah virus infections: a geospatial modelling analysis. Lancet Planet Health 2024; 8:e463-e475. [PMID: 38969474 DOI: 10.1016/s2542-5196(24)00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING The Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Nanjing Municipal Center for Disease Control and Prevention, Affiliated Nanjing Center for Disease Control and Prevention of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei-Chen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yan-Ning Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nick Golding
- Telethon Kids Institute, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Max L Mehlman
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Brennan IG, Lemmon AR, Moriarty Lemmon E, Hoskin CJ, Donnellan SC, Keogh JS. Populating a Continent: Phylogenomics Reveal the Timing of Australian Frog Diversification. Syst Biol 2024; 73:1-11. [PMID: 37527840 DOI: 10.1093/sysbio/syad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The Australian continent's size and isolation make it an ideal place for studying the accumulation and evolution of biodiversity. Long separated from the ancient supercontinent Gondwana, most of Australia's plants and animals are unique and endemic, including the continent's frogs. Australian frogs comprise a remarkable ecological and morphological diversity categorized into a small number of distantly related radiations. We present a phylogenomic hypothesis based on an exon-capture dataset that spans the main clades of Australian myobatrachoid, pelodryadid hyloid, and microhylid frogs. Our time-calibrated phylogenomic-scale phylogeny identifies great disparity in the relative ages of these groups that vary from Gondwanan relics to recent immigrants from Asia and include arguably the continent's oldest living vertebrate radiation. This age stratification provides insight into the colonization of, and diversification on, the Australian continent through deep time, during periods of dramatic climatic and community changes. Contemporary Australian frog diversity highlights the adaptive capacity of anurans, particularly in response to heat and aridity, and explains why they are one of the continent's most visible faunas. [Anuran; adaptive radiation; Gondwana; phylogenetics].
Collapse
Affiliation(s)
- Ian G Brennan
- Division of Ecology & Evolution, The Australian National University, Canberra, ACT 2601, Australia
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32316, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Stephen C Donnellan
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - J Scott Keogh
- Division of Ecology & Evolution, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Smyčka J, Toszogyova A, Storch D. The relationship between geographic range size and rates of species diversification. Nat Commun 2023; 14:5559. [PMID: 37689787 PMCID: PMC10492861 DOI: 10.1038/s41467-023-41225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.
Collapse
Affiliation(s)
- Jan Smyčka
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic.
| | - Anna Toszogyova
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic
| | - David Storch
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, CZ-11000, Prague, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague, Czech Republic
| |
Collapse
|
5
|
Skeels A, Boschman LM, McFadden IR, Joyce EM, Hagen O, Jiménez Robles O, Bach W, Boussange V, Keggin T, Jetz W, Pellissier L. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace's Line. Science 2023; 381:86-92. [PMID: 37410831 DOI: 10.1126/science.adf7122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Faunal turnover in Indo-Australia across Wallace's Line is one of the most recognizable patterns in biogeography and has catalyzed debate about the role of evolutionary and geoclimatic history in biotic interchanges. Here, analysis of more than 20,000 vertebrate species with a model of geoclimate and biological diversification shows that broad precipitation tolerance and dispersal ability were key for exchange across the deep-time precipitation gradient spanning the region. Sundanian (Southeast Asian) lineages evolved in a climate similar to the humid "stepping stones" of Wallacea, facilitating colonization of the Sahulian (Australian) continental shelf. By contrast, Sahulian lineages predominantly evolved in drier conditions, hampering establishment in Sunda and shaping faunal distinctiveness. We demonstrate how the history of adaptation to past environmental conditions shapes asymmetrical colonization and global biogeographic structure.
Collapse
Affiliation(s)
- A Skeels
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Research School of Biology, Australian National University, Canberra 0200, Australia
| | - L M Boschman
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands
| | - I R McFadden
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | - E M Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, 80331 Munich, Germany
| | - O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - O Jiménez Robles
- Research School of Biology, Australian National University, Canberra 0200, Australia
- Institute of Biology, École Normale Supérieure, 75005 Paris, France
| | - W Bach
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Boussange
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - T Keggin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - W Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA
| | - L Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
6
|
Saxton NA, Powell GS, Bybee SM. A story of vicariance? How the geology of oceanic archipelagos influenced the evolutionary history of endemic damselflies. Mol Phylogenet Evol 2023:107831. [PMID: 37257796 DOI: 10.1016/j.ympev.2023.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
South Pacific islands provide an ideal study system to explore patterns of speciation, specifically examining the role of dispersal versus vicariance. Dispersal is often the suggested mechanism of diversification in the South Pacific, specifically among remote island chains. Here, we provide a phylogeny of several related genera of Coenagrionidae (Odonata: Zygoptera) from the South Pacific, based on five molecular loci, in order to examine patterns of speciation in the region. We used the endemic damselfly genera Nesobasis, Nikoulabasis, and Vanuatubasis found across both Fiji and Vanuatu. Knowledge of the geologic history of the region was used to inform our understanding of the evolution of these genera. Both archipelagos used to be part of the Vitiaz arc which spanned from the Solomon Islands to Tonga and began to break apart 10-12 Ma. Results of our divergence-time estimations and biogeographic reconstructions support that the breakup of this arc acted as a significant vicariance event in the evolution of these taxa. Specifically, it led to the extant generic diversity seen in these damselflies. We find that within the archipelago of Vanuatu, that Espiritu Santo served as an important source for dispersal to other islands with Malekula acting as a stepping stone to Efate.
Collapse
Affiliation(s)
- Natalie A Saxton
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA.
| | - Gareth S Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA; Florida State Collection of Arthropods, Gainesville, FL, 32608
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
7
|
Garg KM, Lamba V, Sanyal A, Dovih P, Chattopadhyay B. Next Generation Sequencing Revolutionizes Organismal Biology Research in Bats. J Mol Evol 2023:10.1007/s00239-023-10107-2. [PMID: 37154841 PMCID: PMC10166039 DOI: 10.1007/s00239-023-10107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host-pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.
Collapse
Affiliation(s)
- Kritika M Garg
- Centre for Interdisciplinay Archaeological Research, Ashoka University, Sonipat, Haryana, 131029, India
- Department of Biology, Ashoka University, Sonipat, Haryana, 131029, India
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
| | - Vinita Lamba
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- J. William Fulbright College of Arts and Sciences, Department of Biological Sciences, University of Arkansas, Fayetteville, AR72701, USA
| | - Avirup Sanyal
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
| | - Pilot Dovih
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
- School of Chemistry and Biotechnology, Sastra University, Thanjavur, Tamil Nadu, 613401, India
| | - Balaji Chattopadhyay
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India.
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India.
| |
Collapse
|
8
|
Ch’ng L, Tsang SM, Ong ZA, Low DH, Wiantoro S, Smith IL, Simmons NB, Su YC, Lohman DJ, Smith GJ, Mendenhall IH. Co-circulation of alpha- and beta-coronaviruses in Pteropus vampyrus flying foxes from Indonesia. Transbound Emerg Dis 2022; 69:3917-3925. [PMID: 36382687 PMCID: PMC9898127 DOI: 10.1111/tbed.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.
Collapse
Affiliation(s)
- Lena Ch’ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Susan M. Tsang
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Zoe A. Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dolyce H.W. Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, West Java 16911, Indonesia
| | - Ina L. Smith
- Health and Biosecurity, The Commonwealth Scientific and Industrial Research Organization, Black Mountain, ACT 2601, Australia
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Yvonne C.F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Gavin J.D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| |
Collapse
|
9
|
Chornelia A, Hughes AC. The evolutionary history and ancestral biogeographic range estimation of old-world Rhinolophidae and Hipposideridae (Chiroptera). BMC Ecol Evol 2022; 22:112. [PMID: 36192699 PMCID: PMC9528145 DOI: 10.1186/s12862-022-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Family Rhinolophidae (horseshoe bats), Hipposideridae (leaf-nosed bats) and Rhinonycteridae (trident bats) are exclusively distributed in the Old-World, and their biogeography reflects the complex historic geological events throughout the Cenozoic. Here we investigated the origin of these families and unravel the conflicting family origin theories using a high resolution tree covering taxa from each zoogeographic realm from Africa to Australia. Ancestral range estimations were performed using a probabilistic approach implemented in BioGeoBEARS with subset analysis per biogeographic range [Old-World as whole, Australia-Oriental-Oceania (AOO) and Afrotropical-Madagascar-Palearctic (AMP)]. RESULT Our result supports an Oriental origin for Rhinolophidae, whereas Hipposideridae originated from the Oriental and African regions in concordance with fossil evidence of both families. The fossil evidence indicates that Hipposideridae has diversified across Eurasia and the Afro-Arabian region since the Middle Eocene. Meanwhile, Rhinonycteridae (the sister family of Hipposideridae) appears to have originated from the Africa region splitting from the common ancestor with Hipposideridae in Africa. Indomalaya is the center of origin of Rhinolophidae AOO lineages, and Indomalayan + Philippines appears to be center of origin of Hipposideridae AOO lineage indicating allopatric speciation and may have involved jump-dispersal (founder-event) speciation within AOO lineage. Wallacea and the Philippines may have been used as stepping stones for dispersal towards Oceania and Australia from the Oriental region. Multiple colonization events via different routes may have occurred in the Philippines (i.e., Palawan and Wallacea) since the Late Miocene. The colonization of Rhinolophidae towards Africa from Asia coincided with the estimated time of Tethys Ocean closure around the Oligocene to Miocene (around 27 Ma), allowing species to disperse via the Arabian Peninsula. Additionally, the number of potential cryptic species in Rhinolophidae in Southeast Asia may have increased since Plio-Pleistocene and late Miocene. CONCLUSION Overall, we conclude an Oriental origin for Rhinolophidae, and Oriental + African for Hipposideridae. The result demonstrates that complex historical events, in addition to species specific ecomorphology and specialization of ecological niches may shape current distributions.
Collapse
Affiliation(s)
- Ada Chornelia
- grid.9227.e0000000119573309Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences, Yunnan, People’s Republic of China ,grid.410726.60000 0004 1797 8419International College, University of Chinese Academy of Sciences (UCAS), Huairou, Beijing, People’s Republic of China ,grid.194645.b0000000121742757School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR People’s Republic of China
| | - Alice Catherine Hughes
- grid.194645.b0000000121742757School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR People’s Republic of China
| |
Collapse
|
10
|
Yi X, Latch EK. Systematics of the New World bats Eptesicus and Histiotus suggest trans-marine dispersal followed by Neotropical cryptic diversification. Mol Phylogenet Evol 2022; 175:107582. [PMID: 35810969 DOI: 10.1016/j.ympev.2022.107582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023]
Abstract
Biodiversity can be boosted by colonization of new habitats such as remote islands and separated continents. Molecular studies have suggested that recently evolved organisms probably colonized already separated continents by dispersal, either via land bridge connections or crossing the ocean. Here we test the on-land and trans-marine dispersal hypotheses by evaluating possibilities of colonization routes over the Bering land bridge and across the Atlantic Ocean in the cosmopolitan bat genus Eptesicus (Chiroptera, Vespertilionidae). Previous molecular studies have found New World Eptesicus more closely related to Histiotus, a Neotropical endemic lineage with enlarged ears, than to Old World Eptesicus. However, phylogenetic relationships within the New World group remained unresolved and their evolutionary history was unclear. Here we studied the systematics of New World Eptesicus and Histiotus using extensive taxonomic and geographic sampling, and genomic data from thousands of ultra-conserved elements (UCEs). We estimated phylogenetic trees using concatenation and multispecies coalescent. All analyses supported four major New World clades and a novel topology where E. fuscus and Histiotus are sister clades that together diverged from two sister clades of Neotropical Eptesicus. Intra-clade divergence suggested cryptic diversity that has been concealed by morphological features, especially in the Neotropics where taxonomic re-evaluations are warranted. Molecular dating estimated that Old World and New World clades diverged around 17 million years ago followed by radiation of major New World clades in the mid-Miocene, when climatic changes might have facilitated global dispersal and radiation events. Biogeographic ancestral reconstruction supported the Neotropical origin of the New World clades, suggesting a trans-Atlantic colonization route from North Africa to the northern Neotropics. We highlight that trans-marine dispersal may be more prevalent than currently acknowledged and may be an important first step to global biodiversification.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
11
|
Deepak V, Cooper N, Poyarkov NA, Kraus F, Burin G, Das A, Narayanan S, Streicher JW, Smith SJ, Gower DJ. Multilocus phylogeny, natural history traits and classification of natricine snakes (Serpentes: Natricinae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Natricine snakes are geographically widespread, species rich (with ~250 extant species) and both morphologically and ecologically diverse. We present a multilocus DNA sequence phylogeny for 249 natricine specimens representing 189 named species, including 69 specimens and 21 species not previously sampled. Our inferred Bayesian and maximum likelihood trees form the basis for evaluations of genus-level classification, historical biogeography, lineage diversification, and dietary, habit and reproductive-mode diversity and evolution, although several, mostly deeper, relationships remain poorly resolved. The optimal trees support natricine origins in Asia, with dispersals to Australo-Melanesia, sub-Saharan Africa (including Seychelles Archipelago, excluding Aldabra), Europe and North Africa and into North and Central America. Viviparity appears to have evolved independently three times in Natricinae but was not significantly associated with an aquatic habit. We found limited associations between habit and diet categories. We propose generic reallocations for four natricine species and highlight other points of uncertainty in natricine classification.
Collapse
Affiliation(s)
- V Deepak
- Department of Life Sciences, Natural History Museum, London, UK
- Senckenberg Dresden, Königsbrücker Landstraße, Dresden, Germany
| | - Natalie Cooper
- Department of Life Sciences, Natural History Museum, London, UK
| | - Nikolay A Poyarkov
- Department of Vertebrate Zoology, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
- Joint Russian–Vietnamese Tropical Research and Technological Center, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Gustavo Burin
- Department of Life Sciences, Natural History Museum, London, UK
| | - Abhijit Das
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | - Surya Narayanan
- Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Srirampura, Bangalore, Karnataka, India
| | | | - Sarah-Jane Smith
- Department of Life Sciences, Natural History Museum, London, UK
- Imperial College London, South Kensington, London, UK
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
12
|
Garg KM, Chattopadhyay B. Gene Flow in Volant Vertebrates: Species Biology, Ecology and Climate Change. J Indian Inst Sci 2021; 101:165-176. [PMID: 34155425 PMCID: PMC8207815 DOI: 10.1007/s41745-021-00239-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Gene flow, the exchange of genetic material between populations is an important biological process, which shapes and maintains biodiversity. The successful movement of individuals between populations depends on multiple factors determined by species biology and the environment. One of the most important factors regulating gene flow is the ability to move, and flight allows individuals to easily move across geographical barriers. Volant vertebrates are found on some of the remotest islands and contribute significantly to the biodiversity and ecosystem. The availability of next-generation sequencing data for non-model animals has substantially improved our understanding of gene flow and its consequences, allowing us to look at fine-scale patterns. However, most of our understanding regarding gene flow comes from the temperate regions and the Neotropics. The lack of studies from species-rich Asia is striking. In this review, we outline the importance of gene flow and the factors affecting gene flow, especially for volant vertebrates. We especially discuss research studies from tropical biomes of South and Southeast Asia, highlight the lacuna in literature and provide an outline for future studies in this species-rich region.
Collapse
Affiliation(s)
- Kritika M. Garg
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka India
- Department of Biology, Ashoka University, Sonipat, Haryana India
| | | |
Collapse
|
13
|
Aziz SA, McConkey KR, Tanalgo K, Sritongchuay T, Low MR, Yong JY, Mildenstein TL, Nuevo-Diego CE, Lim VC, Racey PA. The Critical Importance of Old World Fruit Bats for Healthy Ecosystems and Economies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641411] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite extensive documentation of the ecological and economic importance of Old World fruit bats (Chiroptera: Pteropodidae) and the many threats they face from humans, negative attitudes towards pteropodids have persisted, fuelled by perceptions of bats as being pests and undesirable neighbours. Such long-term negativity towards bats is now further exacerbated by more recent disease-related concerns, particularly associated with the current COVID-19 pandemic. There remains an urgent need to investigate and highlight the positive and beneficial aspects of bats across the Old World. While previous reviews have summarised these extensively, numerous new studies conducted over the last 36 years have provided further valuable data and insights which warrant an updated review. Here we synthesise research on pteropodid-plant interactions, comprising diet, ecological roles, and ecosystem services, conducted during 1985-2020. We uncovered a total of 311 studies covering 75 out of the known 201 pteropodid species (37%), conducted in 47 countries. The majority of studies documented diet (52% of all studies; 67 pteropodid species), followed by foraging movement (49%; 50 pteropodid species), with fewer studies directly investigating the roles played by pteropodids in seed dispersal (24%; 41 pteropodid species), pollination (14%; 19 pteropodid species), and conflict with fruit growers (12%; 11 pteropodid species). Pteropodids were recorded feeding on 1072 plant species from 493 genera and 148 families, with fruits comprising the majority of plant parts consumed, followed by flowers/nectar/pollen, leaves, and other miscellaneous parts. Sixteen pteropodid species have been confirmed to act as pollinators for a total of 21 plant species, and 29 pteropodid species have been confirmed to act as seed dispersers for a total of 311 plant species. Anthropogenic threats disrupting bat-plant interactions in the Old World include hunting, direct persecution, habitat loss/disturbance, invasive species, and climate change, leading to ecosystem-level repercussions. We identify notable research gaps and important research priorities to support conservation action for pteropodids.
Collapse
|
14
|
Tsang SM, Low DHW, Wiantoro S, Smith I, Jayakumar J, Simmons NB, Vijaykrishna D, Lohman DJ, Mendenhall IH. Detection of Tioman Virus in Pteropus vampyrus Near Flores, Indonesia. Viruses 2021; 13:v13040563. [PMID: 33810446 PMCID: PMC8067168 DOI: 10.3390/v13040563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Diverse paramyxoviruses have coevolved with their bat hosts, including fruit bats such as flying foxes (Chiroptera: Pteropodidae). Several of these viruses are zoonotic, but the diversity and distribution of Paramyxoviridae are poorly understood. We screened pooled feces samples from three Pteropus vampyrus colonies and assayed tissues, rectal swabs, and oral swabs from 95 individuals of 23 pteropodid species sampled at 17 sites across the Indonesian archipelago with a conventional paramyxovirus PCR; all tested negative. Samples from 43 individuals were screened with next generation sequencing (NGS), and a single Pteropus vampyrus collected near Flores had Tioman virus sequencing reads. Tioman virus is a bat-borne virus in the genus Pararubulavirus with prior evidence of spillover to humans. This work expands the known range of Tioman virus, and it is likely that this isolated colony likely has sustained intergenerational transmission over a long period.
Collapse
Affiliation(s)
- Susan M. Tsang
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; (S.M.T.); (N.B.S.)
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines;
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
| | - Dolyce H. W. Low
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (D.H.W.L.); (J.J.)
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia;
| | - Ina Smith
- Health and Biosecurity, The Commonwealth Scientific and Industrial Research Organization, Black Mountain, ACT 2601, Australia;
| | - Jayanthi Jayakumar
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (D.H.W.L.); (J.J.)
| | - Nancy B. Simmons
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; (S.M.T.); (N.B.S.)
| | - Dhanasekaran Vijaykrishna
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - David J. Lohman
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines;
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (D.H.W.L.); (J.J.)
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Correspondence:
| |
Collapse
|
15
|
Deepak V, Maddock ST, Williams R, Nagy ZT, Conradie W, Rocha S, James Harris D, Perera A, Gvoždík V, Doherty-Bone TM, Kamei RG, Menegon M, Labisko J, Morel C, Cooper N, Day JJ, Gower DJ. Molecular phylogenetics of sub-Saharan African natricine snakes, and the biogeographic origins of the Seychelles endemic Lycognathophis seychellensis. Mol Phylogenet Evol 2021; 161:107152. [PMID: 33741534 DOI: 10.1016/j.ympev.2021.107152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Phylogenetic relationships of sub-Saharan African natricine snakes are understudied and poorly understood, which in turn has precluded analyses of the historical biogeography of the Seychelles endemic Lycognathophis seychellensis. We inferred the phylogenetic relationships of Seychelles and mainland sub-Saharan natricines by analysing a multilocus DNA sequence dataset for three mitochondrial (mt) and four nuclear (nu) genes. The mainland sub-Saharan natricines and L. seychellensis comprise a well-supported clade. Two maximally supported sets of relationships within this clade are (Limnophis,Natriciteres) and (Afronatrix,(Hydraethiops,Helophis)). The relationships of L. seychellensis with respect to these two lineages are not clearly resolved by analysing concatenated mt and nu data. Analysed separately, nu data best support a sister relationship of L. seychellensis with (Afronatrix,(Hydraethiops,Helophis)) and mt data best support a sister relationship with all mainland sub-Saharan natricines. Methods designed to cope with incomplete lineage sorting strongly favour the former hypothesis. Genetic variation among up to 33 L. seychellensis from five Seychelles islands is low. Fossil calibrated divergence time estimates support an overseas dispersal of the L. seychellensis lineage to the Seychelles from mainland Africa ca. 43-25 million years before present (Ma), rather than this taxon being a Gondwanan relic.
Collapse
Affiliation(s)
- V Deepak
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK.
| | - Simon T Maddock
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; School of Biology, Chemistry and Forensic Science, Wolverhampton University, WV1 1LY, UK; Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Rhiannon Williams
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; NRA Environmental Consultants, Cairns, Queensland 4870, Australia
| | | | - Werner Conradie
- Port Elizabeth Museum (Bayworld), Humewood, Port Elizabeth 6013, South Africa; Department of Nature Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, George Campus, Nelson Mandela University, George, South Africa
| | - Sara Rocha
- Biomedical Research Center (CINBIO), University of Vigo & Galicia Sur Health Institute, Vigo, Spain
| | - D James Harris
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, 4485-661 Vairão, Portugal
| | - Ana Perera
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, 4485-661 Vairão, Portugal
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; National Museum, Department of Zoology, Prague, Czech Republic
| | - Thomas M Doherty-Bone
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; Conservation Programs, Royal Zoological Society of Scotland, Edinburgh EH12 6TL, UK
| | - Rachunliu G Kamei
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Michele Menegon
- Division of Biology & Conservation Ecology, Manchester Metropolitan University, UK; PAMS Foundation, P.O. Box 16556, Arusha, Tanzania
| | - Jim Labisko
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles; Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | | | - Natalie Cooper
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| |
Collapse
|
16
|
Chen S, Juan C, Rossiter SJ, Kinjo T, Fukui D, Kawai K, Tsang SM, Veluz MJ, Sakurai H, Lin H, Jang‐Liaw N, Osawa K, Ko W, Izawa M. Population genetic structure of the insular Ryukyu flying fox
Pteropus dasymallus. Biotropica 2021. [DOI: 10.1111/btp.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiang‐Fan Chen
- Center for General Education National Taipei University New Taipei City Taiwan
| | - Chung‐Hao Juan
- Center for General Education National Taipei University New Taipei City Taiwan
| | | | | | - Dai Fukui
- The University of Tokyo Hokkaido Forest The University of Tokyo Hokkaido Japan
| | - Kuniko Kawai
- Department of Biology Tokai University Hokkaido Japan
| | - Susan M. Tsang
- Department of Mammalogy American Museum of Natural History New York NY USA
- Mammalogy Section National Museum of Natural History Manila Philippines
| | | | | | - Hua‐Ching Lin
- Forestry Bureau Council of Agriculture Taipei Taiwan
| | | | | | - Wen‐Ya Ko
- Department of Life Sciences and Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Masako Izawa
- Biology Program Faculty of Science University of the Ryukyus Okinawa Japan
| |
Collapse
|
17
|
Almeida FC, Amador LI, Giannini NP. Explosive radiation at the origin of Old World fruit bats (Chiroptera, Pteropodidae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Ali JR, Heaney LR. Wallace's line,
Wallacea
, and associated divides and areas: history of a tortuous tangle of ideas and labels. Biol Rev Camb Philos Soc 2021; 96:922-942. [DOI: 10.1111/brv.12683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Jason R. Ali
- Department of Earth Sciences University of Hong Kong Pokfulam Road Hong Kong China
| | - Lawrence R. Heaney
- Field Museum of Natural History 1400 S Lake Shore Drive Chicago IL 60605‐2496 U.S.A
| |
Collapse
|
19
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
20
|
Ali JR, Aitchison JC, Meiri S. Redrawing Wallace’s Line based on the fauna of Christmas Island, eastern Indian Ocean. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Based on a comprehensive literature survey, we determined the sources of the terrestrial vertebrate species on Christmas Island, asking where they originated relative to Wallace’s Line (the southern end of the divide lies 1100 km to the east, where the Lombok Strait adjoins the eastern Indian Ocean). The two bats, Pipistrellus murrayi and Pteropus natalis, are from the west. Concerning the endemic and ‘resident’ bird species, one is from the west (Collocalia natalis), four are from the east (Accipiter fasciatus, Egretta novaehollandiae, Falco cenchroides and Ninox natalis) and the other 15 are ambiguous or indeterminate. Most of the land-locked species are also from the east: rodents Rattus macleari and Rattus nativitatis, and squamates Cryptoblepharus egeriae, Emoia nativitatis and Lepidodactylus listeria. Additionally, two have westerly origins (Crocidura trichura and Cyrtodactylus sadleiri), one is ambiguous (Emoia atrocostata) and another is unknown (Ramphotyphlops exocoeti). West-directed surface currents that flow across the eastern Indian Ocean towards Christmas Island would have facilitated most of the land-animal colonizations. We therefore suggest that Wallace’s Line be redrawn such that the landmass is placed on the Australasian side of this fundamental biogeographical boundary.
Collapse
Affiliation(s)
- Jason R Ali
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jonathan C Aitchison
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Australia
| | - Shai Meiri
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|