1
|
Zheng M, Chen S, Zeng Z, Cai H, Zhang H, Yu X, Wang W, Li X, Li CZ, He B, Deng KQ, Lu Z. Targeted ablation of the left middle cervical ganglion prevents ventricular arrhythmias and cardiac injury induced by AMI. Basic Res Cardiol 2024; 119:57-74. [PMID: 38151579 DOI: 10.1007/s00395-023-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Siyu Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Hanyu Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weina Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xianqing Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chen-Ze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Yan M, Zhao J, Kang Y, Liu L, He W, Xie Y, Wang R, Shan L, Li X, Ma K. Effect and mechanism of safranal on ISO-induced myocardial injury based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116103. [PMID: 36586525 DOI: 10.1016/j.jep.2022.116103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sympathetic hyperactivation is a significant risk factor in the development of cardiovascular disease. Safranal has shown good myocardial protection in recent studies, but the mechanism of its role in myocardial injury caused by sympathetic hyperactivation remains unclear. AIM OF THE STUDY The purpose of this study was to investigate whether safranal can effectively reduce isoproterenol (ISO)-induced myocardial injury in rats and H9c2 cells and to reveal its pharmacological action and target in inhibiting myocardial injury caused by sympathetic hyperactivation. MATERIALS AND METHODS This study was carried out using network pharmacology, molecular docking, and in vitro and in vivo experiments. An in vivo model of myocardial injury was established by subcutaneous injection of ISO, and an in vitro model of H9c2 cell injury was induced by ISO. RESULTS Safranal ameliorated myocardial injury caused by sympathetic hyperactivation by reducing the level of myocardial apoptosis. According to the results of network pharmacological analysis and molecular docking, the mechanism by which safranal alleviates myocardial injury may be closely related to the TNF signaling pathway, and safranal plays a role by regulating the core targets of the TNF signaling pathway. Safranal significantly inhibited the protein expression of TNF, PTGS2, MMP9 and pRELA. CONCLUSION Safranal plays a protective role in myocardial injury induced by sympathetic hyperactivation by downregulating the TNF signaling pathway.
Collapse
Affiliation(s)
- Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Jichuan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Rui Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, 832003, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832003, China; Department of Physiology, Shihezi University School of Medicine, Shihezi, 832003, China.
| |
Collapse
|
3
|
He B, Wang X, Zhao F, Guo T, Po SS, Lu Z. The ligament of Marshall and arrhythmias: A review. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 44:792-799. [PMID: 32914878 DOI: 10.1111/pace.14071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023]
Abstract
The ligament of Marshall (LOM) is a remnant of the embryonic sinus venosus and left cardinal vein, and contains fat and fibrous tissues, blood vessels, muscle bundles, nerve fibers, and ganglia. The complexity of LOM's structure makes it as a source of triggers and drivers as well as substrates of re-entry for atrial arrhythmias, especially for atrial fibrillation (AF). LOM also serves as a portion of left atrial macro-re-entrant circuit, especially peri-mitral isthmus re-entrant circuit. Experimental studies demonstrate that the LOM acts as a sympathetic conduit between the left stellate ganglion and the ventricles, and participates in the initiation and maintenance of ventricular arrhythmias. Endocardial or epicardial catheter ablation or ethanol infusion into the vein of Marshall may serve as an important adjunct therapy to pulmonary vein isolation in patients with advanced stage of AF, and may help alleviate ventricular arrhythmias as well.
Collapse
Affiliation(s)
- Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoying Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zhao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Guo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Qin W, Zhang L, Li Z, Xiao D, Zhang Y, Yang H, Zhang H, Xu C, Zhang Y. Metoprolol protects against myocardial infarction by inhibiting miR-1 expression in rats. J Pharm Pharmacol 2019; 72:76-83. [PMID: 31702064 DOI: 10.1111/jphp.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Metoprolol is regarded as a first-line medicine for the treatment of myocardial infarction (MI). However, the underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of miR-1 in the pharmacological function of metoprolol. METHODS In vivo MI model was established by left anterior descending coronary artery (LAD) ligation. The effects of metoprolol on infarct size and cardiac dysfunction were determined by triphenyltetrazolium chloride staining and cardiac echocardiography, respectively. In vitro oxidative stress cardiomyocyte model was established by H2 O2 treatment. The effect of metoprolol on the expression of miR-1 and connexin43 (Cx43) was quantified by real-time PCR and western blot, respectively. The intercellular communication was evaluated by lucifer yellow dye diffusion. KEY FINDINGS Left anterior descending ligation-induced MI injury was markedly attenuated by metoprolol as shown by reduced infarct size and better cardiac function. Metoprolol reversed the up-regulation of miR-1 and down-regulation of Cx43 in MI heart. Moreover, in H2 O2 -stimulated cardiomyocytes, overexpression of miR-1 abolished the effects of metoprolol on Cx43 up-regulation and increased intercellular communication, indicating that miR-1 may be a necessary mediator for the cardiac protective function of metoprolol. CONCLUSIONS Metoprolol relieves MI injury via suppression miR-1, thus increasing its target protein Cx43 and improving intercellular communication.
Collapse
Affiliation(s)
- Wei Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.,School of Pharmacy, Jining Medical University, Rizhao, China
| | - Longyin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Huan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.,Institute of Cardiovascular Research, Harbin Medical University, Harbin, China
| |
Collapse
|