1
|
Liu G, Lu Y, Gao D, Huang Z, Ma L. Identification of an energy metabolism-related six-gene signature for distinguishing and forecasting the prognosis of low-grade gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:146. [PMID: 36846014 PMCID: PMC9951020 DOI: 10.21037/atm-22-6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
Background Low-grade gliomas (LGG) account for 20-25% of all gliomas. In this study, we assessed whether metabolic status was correlated with clinical outcomes in LGG patients using data from The Cancer Genome Atlas (TCGA). Methods LGG patient data were collected from TCGA, and the Molecular Signature Database was used to extract gene sets related to energy metabolism. After performing a consensus-clustering algorithm, the LGG patients were divided into four clusters. We then compared the tumor prognosis, function, immune cell infiltration, checkpoint proteins, chemo-resistance, and cancer stem cells (CSC) between the two groups with the greatest prognostic difference. Using least absolute shrinkage and selection operator (LASSO) analysis, an energy metabolism-related signature was further developed. Results Energy metabolism-related signatures were applied to identify four clusters (C1, C2, C3, and C4) using a consensus-clustering algorithm. C1 LGG patients were more related to the synapse and had higher CSC scores, more chemo-resistance, and a better prognosis. C4 LGG was observed to have more immune-related pathways and better immunity. We then identified six energy metabolism-related genes (PYGL, HS3ST3B, NNMT, FMOD, CHST6, and B3GNT7) that can accurately predict LGG prognosis not only as a whole but also based on the independent predictions of each of these six genes. Conclusions The energy metabolism-related subtypes of LGG were identified, which were strongly related to the immune microenvironment, immune checkpoint proteins, CSCs, chemo-resistance, prognosis, and LGG advancement. A signature of genes involved in energy metabolism could help to distinguish and predict the prognosis of LGG patients, and a promising method to discover patients that may benefit from LGG therapy.
Collapse
Affiliation(s)
- Guoli Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Radiology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yuan Lu
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Duangui Gao
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhi Huang
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lin Ma
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Radiology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
2
|
Seung WB, Cha SH, Kim HJ, Choi SH, Lee J, Kwak D, Hyun Woo K, You JW, Kim YW, Kim SK, Lee DS. Triolein emulsion enhances temozolomide brain delivery: an experimental study in rats. Drug Deliv 2021; 28:2373-2382. [PMID: 34747271 PMCID: PMC8583762 DOI: 10.1080/10717544.2021.1998247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose To evaluate the enhancement of temozolomide (TMZ) delivery in the rat brain using a triolein emulsion. Materials and Methods Rats were divided into the five groups as following: group 1 (negative control), group 2 (treated with triolein emulsion and TMZ 20 mg/kg), and group 3 (TMZ 20 mg/kg treatment without triolein), group 4 (treated with triolein emulsion and TMZ 10 mg/kg), and group 5 (TMZ 10 mg/kg treatment without triolein). Triolein emulsion was infused into the right common carotid artery. One hour later, the TMZ concentration was evaluated quantitatively and qualitatively using high-performance liquid chromatography (HPLC-MS) and desorption electrospray ionization mass spectrometry (DESI-MS) imaging, respectively. The concentration ratios of the ipsilateral to contralateral hemisphere in each group were determined and the statistical analysis was conducted using an unpaired t-test. Results Quantitatively, the TMZ concentration ratio of the ipsilateral to the control hemisphere was 2.41 and 1.13 in groups 2 and 3, and were 2.49 and 1.14 in groups 4 and 5, respectively. Thus, the TMZ signal intensities of TMZ in group 2 and 4 were statistically high in the ipsilateral hemispheres. Qualitatively, the signal intensity of TMZ was remarkably high in the ipsilateral hemisphere in group 2 and 4. Conclusions The triolein emulsion efficiently opened the blood-brain barrier and could provide a potential new strategy to enhance the therapeutic effect of TMZ. HPLC-MS and DESI-MS imaging were shown to be suitable for analyses of enhancement of brain TMZ concentrations.
Collapse
Affiliation(s)
- Won-Bae Seung
- Department of Neurosurgery, Dongguk University College of Medicine, Dongguk University Gyeongju Hospital, Gyeongju, South Korea.,Department of Neurosurgery, SMG Yeonse Hospital, Changwon, South Korea
| | - Seung Heon Cha
- College of Medicine, Pusan National University, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hak Jin Kim
- College of Medicine, Pusan National University, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Seon Hee Choi
- College of Medicine, Pusan National University, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Kim Hyun Woo
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook You
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yong-Woo Kim
- Pusan National University Yangsan Hospital, College of Medicine, Pusan National University, Busan, South Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Da-Sol Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| |
Collapse
|
3
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
4
|
Jiapaer S, Furuta T, Dong Y, Kitabayashi T, Sabit H, Zhang J, Zhang G, Tanaka S, Kobayashi M, Hirao A, Nakada M. Identification of 2-Fluoropalmitic Acid as a Potential Therapeutic Agent Against Glioblastoma. Curr Pharm Des 2021; 26:4675-4684. [PMID: 32348209 DOI: 10.2174/1381612826666200429092742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glioblastomas (GBMs) are aggressive malignant brain tumors. Although chemotherapy with temozolomide (TMZ) can extend patient survival, most patients eventually demonstrate resistance. Therefore, novel therapeutic agents that overcome TMZ chemoresistance are required to improve patient outcomes. PURPOSE Drug screening is an efficient method to find new therapeutic agents from existing drugs. In this study, we explored a novel anti-glioma agent by drug screening and analyzed its function with respect to GBM treatment for future clinical applications. METHODS Drug libraries containing 1,301 diverse chemical compounds were screened against two glioma stem cell (GSC) lines for drug candidate selection. The effect of selected agents on GSCs and glioma was estimated through viability, proliferation, sphere formation, and invasion assays. Combination therapy was performed to assess its ability to enhance TMZ cytotoxicity against GBM. To clarify the mechanism of action, we performed methylation-specific polymerase chain reaction, gelatin zymography, and western blot analysis. RESULTS The acyl-CoA synthetase inhibitor 2-fluoropalmitic acid (2-FPA) was selected as a candidate anti-glioma agent. 2-FPA suppressed the viability and stem-like phenotype of GSCs. It also inhibited proliferation and invasion of glioma cell lines. Combination therapy of 2-FPA with TMZ synergistically enhanced the efficacy of TMZ. 2-FPA suppressed the expression of phosphor-ERK, CD133, and SOX-2; reduced MMP-2 activity; and increased methylation of the MGMT promoter. CONCLUSION 2-FPA was identified as a potential therapeutic agent against GBM. To extend these findings, physiological studies are required to examine the efficacy of 2-FPA against GBM in vivo.
Collapse
Affiliation(s)
- Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University, Kurume, Japan
| | - Yu Dong
- Shenzhen SAMII Medical Center, Shenzhen, Guangdong Province, China
| | | | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Jiakang Zhang
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Guangtao Zhang
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shingo Tanaka
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6:25. [PMID: 32922954 PMCID: PMC7398200 DOI: 10.1186/s41016-020-00207-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common form of primary brain tumor. Glioblastoma stem cells play an important role in tumor formation by activation of several signaling pathways. Wnt signaling pathway is one such important pathway which helps cellular differentiation to promote tumor formation in the brain. Glioblastoma remains to be a highly destructive type of tumor despite availability of treatment strategies like surgery, chemotherapy, and radiation. Advances in the field of cancer biology have revolutionized therapy by allowing targeting of tumor-specific molecular deregulation. In this review, we discuss about the significance of glioblastoma stem cells in cancer progression through Wnt signaling pathway and highlight the clinical targets being potentially considered for therapy in glioblastoma.
Collapse
Affiliation(s)
- Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| | - Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
6
|
Wang M, Yang C, Liu X, Zheng J, Xue Y, Ruan X, Shen S, Wang D, Li Z, Cai H, Liu Y. An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med 2020; 24:6120-6136. [PMID: 32368853 PMCID: PMC7294115 DOI: 10.1111/jcmm.15217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1‐AS1‐144aa‐uORF (144aa‐uORF) and some non‐coding RNAs in gliomas were assessed. Real‐time quantitative PCR or Western blot was used to discover the expression of 144aa‐uORF, ZNRD1‐AS1, miR‐499a‐5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull‐down assays were applied to explore the interrelationship between 144aa‐uORF and ZNRD1‐AS1. The role of the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa‐uORF in glioma tissues and cells. Up‐regulation of 144aa‐uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up‐regulated 144aa‐uORF can increase the degradation of ZNRD1‐AS1 through the nonsense‐mediated RNA decay (NMD) pathway. Knockdown of ZNRD1‐AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR‐499a‐5p. At the same time, miR‐499a‐5p is down‐regulated and has a tumour‐suppressive effect in gliomas. In addition, ZNRD1‐AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR‐499a‐5p. Notably, ELF1 binds to the promoter region of EMI1 and up‐regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mo Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Alves ALV, Costa AM, Martinho O, da Silva VD, Jordan P, Silva VAO, Reis RM. WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line. Cells 2020; 9:E485. [PMID: 32093151 PMCID: PMC7072831 DOI: 10.3390/cells9020485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1-baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line.
Collapse
Affiliation(s)
- Ana Laura Vieira Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Angela Margarida Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Vinicius Duval da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| |
Collapse
|
8
|
Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers (Basel) 2019; 11:cancers11040469. [PMID: 30987226 PMCID: PMC6521241 DOI: 10.3390/cancers11040469] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery of a conventional lymphatic system in the central nervous system (CNS), led to new immunotherapeutic strategies. In the last two decades, experimental evidence from different groups proved the existence of cancer stem cells (CSCs), also known as tumor-initiating cells, that may play an active role in tumor development and progression. Recent findings also indicated the presence of highly infiltrative CSCs in the peritumoral region of GBM. This region appears to play a key role in tumor growing and recurrence. However, until recently, few studies investigated the biomolecular characteristics of the peritumoral tissue. The aim of this review is to recapitulate the pathological features of GBM and of the peritumoral region associated with progression and recurrence.
Collapse
|
9
|
Atkins RJ, Stylli SS, Kurganovs N, Mangiola S, Nowell CJ, Ware TM, Corcoran NM, Brown DV, Kaye AH, Morokoff A, Luwor RB, Hovens CM, Mantamadiotis T. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance. Exp Cell Res 2019; 374:353-364. [DOI: 10.1016/j.yexcr.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
|
10
|
Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol 2018; 53:201-211. [PMID: 30031763 DOI: 10.1016/j.semcancer.2018.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022]
|
11
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
12
|
JIAPAER S, FURUTA T, TANAKA S, KITABAYASHI T, NAKADA M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol Med Chir (Tokyo) 2018; 58:405-421. [PMID: 30249919 PMCID: PMC6186761 DOI: 10.2176/nmc.ra.2018-0141] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly malignant type of primary brain tumor with a high mortality rate. Although the current standard therapy consists of surgery followed by radiation and temozolomide (TMZ), chemotherapy can extend patient's post-operative survival but most cases eventually demonstrate resistance to TMZ. O6-methylguanine-DNA methyltransferase (MGMT) repairs the main cytotoxic lesion, as O6-methylguanine, generated by TMZ, can be the main mechanism of the drug resistance. In addition, mismatch repair and BER also contribute to TMZ resistance. TMZ treatment can induce self-protective autophagy, a mechanism by which tumor cells resist TMZ treatment. Emerging evidence also demonstrated that a small population of cells expressing stem cell markers, also identified as GBM stem cells (GSCs), contributes to drug resistance and tumor recurrence owing to their ability for self-renewal and invasion into neighboring tissue. Some molecules maintain stem cell properties. Other molecules or signaling pathways regulate stemness and influence MGMT activity, making these GCSs attractive therapeutic targets. Treatments targeting these molecules and pathways result in suppression of GSCs stemness and, in highly resistant cases, a decrease in MGMT activity. Recently, some novel therapeutic strategies, targeted molecules, immunotherapies, and microRNAs have provided new potential treatments for highly resistant GBM cases. In this review, we summarize the current knowledge of different resistance mechanisms, novel strategies for enhancing the effect of TMZ, and emerging therapeutic approaches to eliminate GSCs, all with the aim to produce a successful GBM treatment and discuss future directions for basic and clinical research to achieve this end.
Collapse
Affiliation(s)
| | - Takuya FURUTA
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - Shingo TANAKA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Mitsutoshi NAKADA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
13
|
Lv P, Wang W, Cao Z, Zhao D, Zhao G, Li D, Qi L, Xu J. Fsk and IBMX inhibit proliferation and proapoptotic of glioma stem cells via activation of cAMP signaling pathway. J Cell Biochem 2018; 120:321-331. [PMID: 30171713 DOI: 10.1002/jcb.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to find out the underlying mechanism of forskolin (Fsk) and 3-isobutyl-1-methylxanthine (IBMX) on glioma stem cells (GSCs). METHODS The expression of cAMP-related protein CREB and pCREB as well as apoptosis-related proteins were detected through Western blot analysis. The level of proliferation and growth rate of human GSCs was measured through thiazolyl blue tetrazolium bromide assay and stem cells forming sphere assay. The apoptosis-related gene expression was measured through reverse transcription-polymerase chain reaction. RESULTS cAMP signaling pathway was activated in GSCs with Fsk-IBMX administration. Fsk-IBMX could inhibit the proliferation as well as invasion and promote the apoptosis of U87 cells. Besides, U0126 could inhibit MAPK signaling pathway to increase the sensitivity of GSCs to cAMP signaling pathway. As a result, Fsk-IBMX combined with U0126 had more negative effect on GSCs. CONCLUSIONS The relationship of cAMP and MAPK signaling pathway in GSCs may provide a potential therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Peng Lv
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Zhiyou Cao
- 465 Hospital, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Dailin Li
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Junjie Xu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, China
| |
Collapse
|
14
|
Pop S, Enciu AM, Necula LG, Tanase C. Long non-coding RNAs in brain tumours: Focus on recent epigenetic findings in glioma. J Cell Mol Med 2018; 22:4597-4610. [PMID: 30117678 PMCID: PMC6156469 DOI: 10.1111/jcmm.13781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma biology is a major focus in tumour research, primarily due to the aggressiveness and high mortality rate of its most aggressive form, glioblastoma. Progress in understanding the molecular mechanisms behind poor prognosis of glioblastoma, regardless of treatment approaches, has changed the classification of brain tumours after nearly 100 years of relying on anatomopathological criteria. Expanding knowledge in genetic, epigenetic and translational medicine is also beginning to contribute to further elucidating molecular dysregulation in glioma. Long non‐coding RNAs (lncRNAs) and their main representatives, large intergenic non‐coding RNAs (lincRNAs), have recently been under scrutiny in glioma research, revealing novel mechanisms of pathogenesis and reinforcing others. Among those confirmed was the reactivation of events significant for foetal brain development and neuronal commitment. Novel mechanisms of tumour suppression and activation of stem‐like behaviour in tumour cells have also been examined. Interestingly, these processes involve lncRNAs that are present both during normal brain development and in brain malignancies and their reactivation might be explained by epigenetic mechanisms, which we discuss in detail in the present review. In addition, the review discusses the lncRNAs‐induced changes, as well as epigenetic changes that are consequential for tumour formation, affecting, in turn, the expression of various types of lncRNAs.
Collapse
Affiliation(s)
- Sevinci Pop
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura G Necula
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Stefan N. Nicolau" National Institute of Virology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristiana Tanase
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| |
Collapse
|
15
|
Nakod PS, Kim Y, Rao SS. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett 2018; 429:41-53. [PMID: 29746930 DOI: 10.1016/j.canlet.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor, is the deadliest form of human cancer with low survival rates because of its highly invasive nature. In recent years, there has been a growing appreciation for the role that glioblastoma stem cells (GSCs) play during tumorigenesis and tumor recurrence of GBM. GSCs are a specialized subset of GBM cells with stem cell-like features that contribute to tumor initiation and therapeutic resistance. Thus, to enhance therapeutic efficiency and improve survival, targeting GSCs and their microenvironmental niche appears to be a promising approach. To develop this approach, understanding GSC-microenvironment interactions is crucial. This review discusses various biomimetic model systems to understand the impact of biophysical, biochemical, and cellular microenvironmental cues on GSC behaviors. These models include two-dimensional or matrix-free environment models, engineered biomaterial-based three-dimensional models, co-culture models, and mouse and rat in vivo models. These systems have been used to study the effects of biophysical factors, modulation of signaling pathways, extracellular matrix components, and culture conditions on the GSC phenotype. The advantages and disadvantages of these model systems and their impact in the field of GSC research are discussed.
Collapse
Affiliation(s)
- Pinaki S Nakod
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yonghyun Kim
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
16
|
Vidak M, Jovcevska I, Samec N, Zottel A, Liovic M, Rozman D, Dzeroski S, Juvan P, Komel R. Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Glioblastoma Marker Candidates. Int J Mol Sci 2018; 19:ijms19051369. [PMID: 29734672 PMCID: PMC5983642 DOI: 10.3390/ijms19051369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive brain malignancy. Although some potential glioblastoma biomarkers have already been identified, there is a lack of cell membrane-bound biomarkers capable of distinguishing brain tissue from glioblastoma and/or glioblastoma stem cells (GSC), which are responsible for the rapid post-operative tumor reoccurrence. In order to find new GB/GSC marker candidates that would be cell surface proteins (CSP), we have performed meta-analysis of genome-scale mRNA expression data from three data repositories (GEO, ArrayExpress and GLIOMASdb). The search yielded ten appropriate datasets, and three (GSE4290/GDS1962, GSE23806/GDS3885, and GLIOMASdb) were used for selection of new GB/GSC marker candidates, while the other seven (GSE4412/GDS1975, GSE4412/GDS1976, E-GEOD-52009, E-GEOD-68848, E-GEOD-16011, E-GEOD-4536, and E-GEOD-74571) were used for bioinformatic validation. The selection identified four new CSP-encoding candidate genes—CD276, FREM2, SPRY1, and SLC47A1—and the bioinformatic validation confirmed these findings. A review of the literature revealed that CD276 is not a novel candidate, while SLC47A1 had lower validation test scores than the other new candidates and was therefore not considered for experimental validation. This validation revealed that the expression of FREM2—but not SPRY1—is higher in glioblastoma cell lines when compared to non-malignant astrocytes. In addition, FREM2 gene and protein expression levels are higher in GB stem-like cell lines than in conventional glioblastoma cell lines. FREM2 is thus proposed as a novel GB biomarker and a putative biomarker of glioblastoma stem cells. Both FREM2 and SPRY1 are expressed on the surface of the GB cells, while SPRY1 alone was found overexpressed in the cytosol of non-malignant astrocytes.
Collapse
Affiliation(s)
- Marko Vidak
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Ivana Jovcevska
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Neja Samec
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Alja Zottel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Mirjana Liovic
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Damjana Rozman
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Saso Dzeroski
- Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Peter Juvan
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Radovan Komel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
17
|
Neagu M, Constantin C, Tampa M, Matei C, Lupu A, Manole E, Ion RM, Fenga C, Tsatsakis AM. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma. Oncotarget 2018; 7:69718-69732. [PMID: 27626486 PMCID: PMC5342510 DOI: 10.18632/oncotarget.11942] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that "escape" the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium.
Collapse
Affiliation(s)
- Monica Neagu
- Faculty of Biology, University of Bucharest, Romania.,Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Clara Matei
- Dermatology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lupu
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Emilia Manole
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania.,Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Rodica-Mariana Ion
- Nanomedicine Research Group, National Institute of R&D for Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania.,Materials Engineering Department, Valahia University of Targovişte, Romania
| | - Concettina Fenga
- Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aristidis M Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
18
|
Yang C, Zheng J, Xue Y, Yu H, Liu X, Ma J, Liu L, Wang P, Li Z, Cai H, Liu Y. The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating Glioblastoma Angiogenesis. Front Mol Neurosci 2018; 10:437. [PMID: 29375300 PMCID: PMC5767169 DOI: 10.3389/fnmol.2017.00437] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary tumor. Angiogenesis plays a critical role in the progression of GBM. Previous studies have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in various cancers and participate in the regulation of the malignant behaviors of tumors. The present study demonstrated that lncRNA antisense 1 to Micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS1) was upregulated whereas miR-211 was downregulated in glioma-associated endothelial cells (GECs). Knockdown of MCM3AP-AS1 suppressed the cell viability, migration, and tube formation of GECs and played a role in inhibiting angiogenesis of GBM in vitro. Furthermore, knockdown of MCM3AP-AS1 increased the expression of miR-211. Luciferase reporter assay implicated that miR-211 targeted KLF5 3'-UTR and consequently inhibited KLF5 expression. Besides, in this study we found that MCM3AP-AS1 knockdown decreased KLF5 and AGGF1 expression by upregulating miR-211. In addition, KLF5 was associated with the promoter region of AGGF1. Knockdown of KLF5 decreased AGGF1 expression by transcriptional repression, and also inhibited the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, this study reveals that MCM3AP-AS1/miR-211/KLF5/AGGF1 axis plays a prominent role in the regulation of GBM angiogenesis and also serves as new therapeutic target for the anti-angiogenic therapy of glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
19
|
Lee S, Kwon MC, Jang JP, Sohng JK, Jung HJ. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol 2017; 51:414-424. [PMID: 28656196 PMCID: PMC5505016 DOI: 10.3892/ijo.2017.4054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant form of primary brain cancer. Despite recent advances in cancer treatment, it remains a substantially incurable disease. Accordingly, more effective GBM therapeutic options are urgently required. In the present study, we investigated the anticancer effect of a ginsenoside metabolite, compound K (CK), against GBM cells. CK significantly inhibited not only growth, but also metastatic ability of U87MG and U373MG cells. CK arrested cell cycle progression at the G0/G1 phase with a decrease in the expression levels of cyclin D1 and cyclin D3 in both cell types. CK also induced apoptosis in GBM cells through nuclear condensation, an increase in ROS generation, mitochondrial membrane potential depolarization, and activation of caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP). Furthermore, CK inhibited phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, contributing to the antiproliferative and apoptotic effects. Moreover, CK suppressed the self-renewal capacity as well as the invasiveness of U87MG and U373MG GBM stem-like cells (GSCs) by inducing a reduction in the expression of GSC markers, such as CD133, Nanog, Oct4 and Sox2. Taken together, our findings suggest that CK may potentially be useful for GBM treatment.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Min Cheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 363-883, Republic of Korea
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 363-883, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Hye Jin Jung
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| |
Collapse
|
20
|
Yan H, Romero-López M, Benitez LI, Di K, Frieboes HB, Hughes CCW, Bota DA, Lowengrub JS. 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Res 2017; 77:4171-4184. [PMID: 28536277 DOI: 10.1158/0008-5472.can-16-3094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, cross-talk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Furthermore, GSC also transdifferentiate into bona fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional antiangiogenic therapies. Here we use three-dimensional mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSCs drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with antiangiogenic therapies reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSCs and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GECs maintain GSCs. Our study suggests that a combinatorial regimen targeting the vasculature, GSCs, and GECs, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. Cancer Res; 77(15); 4171-84. ©2017 AACR.
Collapse
Affiliation(s)
- Huaming Yan
- Department of Mathematics, University of California, Irvine, California
| | - Mónica Romero-López
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Lesly I Benitez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Kaijun Di
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California
| | - Hermann B Frieboes
- James Graham Brown Cancer Center, University of Louisville.,Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| | - Daniela A Bota
- Chao Comprehensive Cancer Center, University of California, Irvine, California.,Department of Neurological Surgery, University of California, Irvine, California.,Department of Neurology, University of California, Irvine, California
| | - John S Lowengrub
- Department of Mathematics, University of California, Irvine, California. .,Department of Biomedical Engineering, University of California, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California
| |
Collapse
|
21
|
Glaser T, Han I, Wu L, Zeng X. Targeted Nanotechnology in Glioblastoma Multiforme. Front Pharmacol 2017; 8:166. [PMID: 28408882 PMCID: PMC5374154 DOI: 10.3389/fphar.2017.00166] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Inbo Han
- Department of Neurosurgery, Spine Center, CHA University, CHA Bundang Medical CenterSeongnam, South Korea
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
22
|
Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, Khotimchenko Y. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett 2016; 12:1721-1728. [PMID: 27602106 PMCID: PMC4998210 DOI: 10.3892/ol.2016.4886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
The development of antitumor medication based on autologous stem cells is one of the most advanced methods in glioblastoma multiforme (GBM) treatment. However, there are no objective criteria for evaluating the effectiveness of this medication on cancer stem cells (CSCs). One possible criterion could be a change in the number of microglial cells and their specific location in the tumor. The present study aimed to understand the interaction between microglial cells and CSCs in an experimental glioblastoma model. C6 glioma cells were used to create a glioblastoma model, as they have the immunophenotypic characteristics of CSCs. The glioma cells (0.2×106) were stereotactically implanted into the brains of 60 rats. On the 10th, 20th and 30th days after implantation, the animals were 15 of the animals were sacrificed, and the obtained materials were analyzed by morphological and immunohistochemical analysis. Implantation of glioma cells into the rat brains caused rapid development of tumors characterized by invasive growth, angiogenesis and a high rate of proliferation. The maximum concentration of microglia was observed in the tumor nodule between days 10 and 20; a high proliferation rate of cancer cells was also observed in this area. By day 30, necrosis advancement was observed and the maximum number of microglial cells was concentrated in the invasive area; the invasive area also exhibited positive staining for CSC marker antibodies. Microglial cells have a key role in the invasive growth processes of glioblastoma, as demonstrated by the location of CSCs in the areas of microglia maximum concentration. Therefore, the present study indicates that changes in microglia position and corresponding suppression of tumor growth may be objective criteria for evaluating the effectiveness of biomedical treatment against CSCs.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Igor Manzhulo
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Polina Mischenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Elena Milkina
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Inessa Dyuizen
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| | - Andrey Bryukhovetskiy
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; NeuroVita Clinic of Restorative and Interventional Neurology and Therapy, Moscow 115478, Russia
| | - Yuri Khotimchenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia; Laboratory of Pharmacology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690059, Russia
| |
Collapse
|
23
|
Hernandez R, Sun H, England CG, Valdovinos HF, Barnhart TE, Yang Y, Cai W. ImmunoPET Imaging of CD146 Expression in Malignant Brain Tumors. Mol Pharm 2016; 13:2563-70. [PMID: 27280694 DOI: 10.1021/acs.molpharmaceut.6b00372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, the overexpression of CD146 and its potential as a therapeutic target in high-grade gliomas, the most lethal type of brain cancer, was uncovered. In this study, we describe the generation of (89)Zr-Df-YY146, a novel (89)Zr-labeled monoclonal antibody (mAb) for the targeting and quantification of CD146 expression in a mouse model of glioblastoma, using noninvasive immunoPET imaging. YY146, a high affinity anti-CD146 mAb, was conjugated to deferoxamine (Df) for labeling with the long-lived positron emitter (89)Zr (t1/2: 78.4 h). In vitro assays, including flow cytometry, immunofluorescence microscopy, and Western blot, were performed with two glioblastoma cell lines, U87MG and U251, to determine their CD146 expression levels. Also, YY146 and Df-YY146's CD146-binding affinities were compared using flow cytometry. In vivo CD146-targeting of (89)Zr-Df-YY146 was evaluated by sequential PET imaging, in athymic nude mice bearing subcutaneously implanted U87MG or U251 tumors. CD146 blocking, ex vivo biodistribution, and histological studies were carried out to confirm (89)Zr-Df-YY146 specificity, as well as the accuracy of PET data. In vitro studies exposed elevated CD146 expression levels in U87MG cells, but negligible levels in U251 cells. Flow cytometry revealed no differences in affinity between YY146 and Df-YY146. (89)Zr labeling of Df-YY146 proceeded with excellent yield (∼80%), radiochemical purity (>95%), and specific activity (∼44 GBq/μmol). Longitudinal PET revealed prominent and persistent (89)Zr-Df-YY146 uptake in mice bearing U87MG tumors that peaked at 14.00 ± 3.28%ID/g (n = 4), 48 h post injection of the tracer. Conversely, uptake was significantly lower in CD146-negative U251 tumors (5.15 ± 0.99%ID/g, at 48 h p.i.; n = 4; P < 0.05). Uptake in U87MG tumors was effectively blocked in a competitive inhibition experiment, corroborating the CD146 specificity of (89)Zr-Df-YY146. Finally, ex vivo biodistribution validated the accuracy of PET data and histological examination successfully correlated tracer uptake with in situ CD146 expression. Prominent, persistent, and specific uptake of (89)Zr-Df-YY146 was observed in brain tumors, demonstrating the potential of this radiotracer for noninvasive PET imaging of CD146 expression. In a future clinical scenario, (89)Zr-Df-YY146 may serve as a tool to guide intervention and assess response to CD146-targeted therapies.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Yunan Yang
- Department of Radiology, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin , Madison, Wisconsin 53705, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53705, United States
| |
Collapse
|
24
|
Jones NM, Rowe MR, Shepherd PR, McConnell MJ. Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. Int J Oncol 2016; 49:207-16. [PMID: 27176780 DOI: 10.3892/ijo.2016.3510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSC) exhibit therapy resistance and drive self-renewal of the tumour, making cancer stem cells an important target for therapy. The PI3K signalling pathway has been the focus of considerable research effort, including in glioblastoma (GBM), a cancer that is notoriously resistant to conventional therapy. Different isoforms of the catalytic sub-unit have been associated with proliferation, migration and differentiation in stem cells and cancer stem cells. Blocking these processes in CSC would improve patient outcome. We examined the effect of isoform specific PI3K inhibitors in two models of GBM CSC, an established GBM stem cell line 08/04 and a neurosphere formation model. We identified the dominant catalytic PI3K isoform for each model, and inhibition of the dominant isoform blocked AKT phosphorylation, as did pan-PI3K/mTOR inhibition. Analysis of SOX2, OCT4 and MSI1 expression revealed that inhibition of the dominant p110 subunit increased expression of cancer stem cell genes, while pan-PI3K/mTOR inhibition caused a similar, though not identical, increase in cancer stem cell gene expression. This suggested that PI3K inhibition enhanced, rather than blocked, CSC activity. Careful analysis of the response to specific isoform inhibition will be necessary before specific subunit inhibitors can be successfully deployed against GBM CSC.
Collapse
Affiliation(s)
- Nicole M Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
25
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|
26
|
Lai Y, Yu X, Lin X, He S. Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int J Mol Med 2015; 37:369-77. [PMID: 26707081 PMCID: PMC4716789 DOI: 10.3892/ijmm.2015.2441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
The sensitization of breast cancer stem cells (BrCSCs) to the inhibitive effects of radiotherapy through adjuvant therapy which targets oncogenic pathways represents a prospective strategy for improving the effect of radiation in patients with triple-negative breast cancer (TNBC). Mammalian target of rapamycin (mTOR) activation is one of the most frequent events in human malignancies, and is critical for sustaining the self-renewing ability of cancer stem cells (CSCs); inhibition by rapamycin is an effective and promising strategy in anticancer treatments. In the present study, we found that mTOR activity was closely related to the self-renewal ability of BrCSCs, and in triple negative MDA-MB-453 and MDA-MB-468 cells, rapamycin repression of mTOR phosphorylation decreased the number of mammospheres and helped to sensitize the resistant CSCs to low-dose radiation therapy. By inhibiting mTOR and mitochondrial manganese superoxide dismutase (MnSOD), we confirmed that rapamycin functioned through the mTOR/MnSOD/reactive oxygen species (ROS) signaling pathway, and the existence of Akt governed the rapamycin-induced asymmetric division (AD) of stem cells in cases of radiation-treated breast cancer. The synergic effects of rapamycin and low-dose radiation induced the AD of stem cells, which then resulted in a decrease in the number of mammospheres, and both were mediated by MnSOD. Governed by Akt, the consequent inhibition of ROS formation and oxidative stress preserved the AD mode of stem cells, which is critical for an improved radiotherapy response in clinical treatment, as the tumor group is thus easier to eliminate with radiation therapy. We posit that an in-depth understanding of the interaction of radiation with CSCs has enormous potential and will make radiation even better and more effective.
Collapse
Affiliation(s)
- Yuanhui Lai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Xinpei Yu
- Department of Geriatric Infection and Organ Function Support Laboratory, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xiaohong Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Shanyang He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
27
|
Kenig S, Bedolla DE, Birarda G, Faoro V, Mitri E, Vindigni A, Storici P, Vaccari L. Fourier transform infrared microspectroscopy reveals biochemical changes associated with glioma stem cell differentiation. Biophys Chem 2015; 207:90-6. [DOI: 10.1016/j.bpc.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023]
|
28
|
Kalkan R. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:95-103. [PMID: 26617463 PMCID: PMC4651416 DOI: 10.4137/cmo.s30271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Turkish Republic of Northern Cyprus
| |
Collapse
|
29
|
Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas. Proc Natl Acad Sci U S A 2015; 112:E6525-34. [PMID: 26553993 DOI: 10.1073/pnas.1502648112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given the highly heterogeneous character of brain malignancies and the associated implication for its proper diagnosis and treatment, finding biomarkers that better characterize this disease from a molecular standpoint is imperative. In this study, we evaluated CD146 as a potential molecular target for diagnosis and targeted therapy of glioblastoma multiforme (GBM), the most common and lethal brain malignancy. YY146, an anti-CD146 monoclonal antibody, was generated and radiolabeled for noninvasive positron-emission tomography (PET) imaging of orthotopic GBM models. (64)Cu-labeled YY146 preferentially accumulated in the tumors of mice bearing U87MG xenografts, which allowed the acquisition of high-contrast PET images of small tumor nodules (∼ 2 mm). Additionally, we found that tumor uptake correlated with the levels of CD146 expression in a highly specific manner. We also explored the potential therapeutic effects of YY146 on the cancer stem cell (CSC) and epithelial-to-mesenchymal (EMT) properties of U87MG cells, demonstrating that YY146 can mitigate those aggressive phenotypes. Using YY146 as the primary antibody, we performed histological studies of World Health Organization (WHO) grades I through IV primary gliomas. The positive correlation found between CD146-positive staining and high tumor grade (χ(2) = 9.028; P = 0.029) concurred with the GBM data available in The Cancer Genome Atlas (TCGA) and validated the clinical value of YY146. In addition, we demonstrate that YY146 can be used to detect CD146 in various cancer cell lines and human resected tumor tissues of multiple other tumor types (gastric, ovarian, liver, and lung), indicating a broad applicability of YY146 in solid tumors.
Collapse
|
30
|
Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res 2015; 75:4416-28. [PMID: 26282173 DOI: 10.1158/0008-5472.can-14-3790] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G2-M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G2-M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC.
Collapse
Affiliation(s)
- Shafiq U Ahmed
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | - Ross Carruthers
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Gilmour
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Colin Watts
- Department of Clinical Neurosciences, Division of Neurosurgery, ED Adrian Building, Forvie Site, Robinson Way, Cambridge University, Cambridge, United Kingdom
| | - Anthony J Chalmers
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
31
|
Iskender B, Izgi K, Karaca H, Canatan H. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9. J Nat Med 2015; 69:543-54. [PMID: 26054707 DOI: 10.1007/s11418-015-0923-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023]
|
32
|
Zhang L, Tong X, Li J, Huang Y, Hu X, Chen Y, Huang J, Wang J, Liu B. Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif 2015; 48:385-97. [PMID: 26013704 DOI: 10.1111/cpr.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self-renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self-renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well-studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti-cancer regimes.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xupeng Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
33
|
Munoz JL, Rodriguez-Cruz V, Walker ND, Greco SJ, Rameshwar P. Temozolomide resistance and tumor recurrence: Halting the Hedgehog. ACTA ACUST UNITED AC 2015; 2. [PMID: 27158638 DOI: 10.14800/ccm.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy with Temozolomide (TMZ), radiation and surgery are the primary methods to treat Glioblastoma Multiforme (GBM), the most common adult intracranial tumor with dismal outcome. GBM resistance to therapy is the main reason of poor patient outcomes. Thus, methods to overcome the resistance are an area of extensive research. This highlight focuses on three recently published articles on the mechanism of resistance and possible therapeutic intervention, including RNA treatment with stem cells. We showed a crucial role of the developmental Sonic Hedgehog (SHH) pathway in the acquisition and maintenance of TMZ resistance. SHH signaling caused TMZ resistance in GBM cells through an increase in the multiple drug resistance gene (MDR1). The SHH receptor, Patched-1 (PTCH1), negatively regulate SHH signaling. In GBM, miR-9 suppressed PTCH1 levels, resulting in the activation of SHH pathway. Thus, SHH signaling is independent of the ligand in resistant GBM cells. MiR-9 was also increased in chemoresistance CD133+ GBM cells. A potential method to reverse resistance was tested by delivering the anti-miR in bone marrow-derived Mesenchymal Stem Cells (MSCs). The anti-miR-9 was transferred into the resistant GBM cells through exosomes and gap junctional intercellular communication. We also review on-going clinical trials with inhibitor of SHH signaling, and also discuss drug delivery by cell therapy for GBM. While GBM treatment has proven to be a challenge, there are a number of novel approaches we are currently developing to manage this malignancy.
Collapse
Affiliation(s)
- Jessian L Munoz
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences-SUNY University of Buffalo, Buffalo, NY, USA
| | - Nykia D Walker
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Steven J Greco
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| |
Collapse
|
34
|
Sibin MK, Bhat DI, Narasingarao KVL, Lavanya C, Chetan GK. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma. Tumour Biol 2015; 36:7607-14. [DOI: 10.1007/s13277-015-3480-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 12/30/2022] Open
|
35
|
Li M, Chao L, Wu J, Xu H, Shen S, Chen S, Gao X, Yu N, Wang Z. Pygo2 siRNA Inhibit the Growth and Increase Apoptosis of U251 Cell by Suppressing Histone H3K4 Trimethylation. J Mol Neurosci 2015; 56:949-955. [PMID: 25869613 DOI: 10.1007/s12031-015-0558-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
The development of novel therapeutic strategies for glioma requires the identification of molecular targets involved in malignancy. Pygopus (Pygo) is a new discovered and specific downstream component of canonical Wnt signaling. Our previous study has demonstrated that Pygo2 is highly expressed in and promotes the growth of glioma cells. However, the role of Pygo2 in glioma remains to be elucidated. In the current study, we investigated the role of Pygo2 in human glioma U251 cells and showed that knocking down of the expression of Pygo2 in U251 cells using lentivirally expressed siRNA have inhibited cell proliferation and increased apoptosis through decreasing H3K4me3 expression. Moreover, we found Pygo2 was enriched in U251 glioma cancer stem-like cells and Pygo2 siRNA resulted in a reduced number as well as size of tumor spheres. According to our result, this paper now links mechanistically Pygo2's role in histone modification to its enhancement/reduction of proliferation/apoptosis in glioma cells and indicate that Pygo2 may play an important role in self-renew and proliferation in U251 glioma cancer stem-like cells.
Collapse
Affiliation(s)
- Mingcong Li
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Linlin Chao
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Jian Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, 230000, People's Republic of China
| | - Shanghan Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Xin Gao
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Ning Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Zhanxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China.
| |
Collapse
|
36
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Hira VVV, Ploegmakers KJ, Grevers F, Verbovšek U, Silvestre-Roig C, Aronica E, Tigchelaar W, Turnšek TL, Molenaar RJ, Van Noorden CJF. CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J Histochem Cytochem 2015; 63:481-93. [DOI: 10.1369/0022155415581689] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Poor survival of high-grade glioma is at least partly caused by glioma stem-like cells (GSLCs) that are resistant to therapy. GSLCs reside in niches in close vicinity of endothelium. The aim of the present study was to characterize proteins that may be functional in the GSLC niche by performing immunohistochemistry on serial cryostat sections of human high-grade glioma samples. We have found nine niches in five out of five high-grade glioma samples that were all surrounding arterioles with CD31+ endothelial cells and containing cellular structures that were CD133+ and nestin+. All nine niches expressed stromal-derived factor-1α (SDF-1α), its receptor C-X-C chemokine receptor type 4 (CXCR4), osteopontin and cathepsin K. SDF-1α plays a role in homing of CXCR4+ stem cells and leukocytes, whereas osteopontin and cathepsin K promote migration of cancer cells and leukocytes. Leukocyte-related markers, such as CD68, macrophage matrix metalloprotease-9, CD177 and neutrophil elastase were often but not always detected in the niches. We suggest that SDF-1α is involved in homing of CXCR4+ GSLCs and leukocytes and that cathepsin K and osteopontin are involved in the migration of GSLCs out of the niches.
Collapse
Affiliation(s)
- Vashendriya V. V. Hira
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Kimberley J. Ploegmakers
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Frederieke Grevers
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Urška Verbovšek
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Carlos Silvestre-Roig
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Eleonora Aronica
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Wikky Tigchelaar
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Tamara Lah Turnšek
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Remco J. Molenaar
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| | - Cornelis J. F. Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands (VVVH, KJP, FG, WT, RJM, CJFVN)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (UV, TLT)
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands (CSR, EA)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia (TLT)
| |
Collapse
|
38
|
Dang H, Wang J, Cheng JX, Wang PY, Wang Y, Cheng LF, Du C, Wang XJ. Efficacy of local delivery of ardipusilloside I using biodegradable implants against cerebral tumor growth. Am J Cancer Res 2014; 5:243-254. [PMID: 25628934 PMCID: PMC4300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023] Open
Abstract
Ardipusilloside I (ADS-I) is a natural compound that can be isolated from the Chinese medicinal herb Ardisiapusilla A.DC, and has been reported to inhibit the growth of glioblastoma cells in cultures. This study was designed to test its efficacy by the delivery using biodegradable implants against glioblastoma in vivo. ADS-I was incorporated into polymer microspheres, which were prepared by a mixture of poly (D, L-lactic acid) and poly (D, L-lactic-co-glycolic acid) polymers and then fabricated into wafers. The anti-glioma activities of ADS-I-loaded wafers were examined by methylthiazol tetrazolium (MTT) assay in cultured rat C6 glioma cells, and by magnetic resonance imaging (MRI) and survival monitoring in C6 glioma-bearing rats. Here, we showed that ADS-I-loaded wafers sustained ADS-I release in vitro for 36 days in Higuchi model of kinetics, and had the same cytotoxic activity as ADS-I in the solution against the growth of C6 glioma cells in cultures. In C6 glioma-bearing rats, ADS-I wafer implants inhibited tumor growth in a dose-dependent matter, and were more effective than the same dosage of ADS-I in the solution. The tumor suppression efficacies of ADS-I wafer implants were positively correlated with an increase in tumor cell apoptosis and prolonged animal survival, and were associated with a decrease in vascular endothelial growth factor, C-reactive protein, tumor necrosis factor-α and interleukin-6, and an increase in interleukin-2 expression. In conclusion, this study demonstrates significant efficacy of local delivery of ADS-I using polymer implants against glioma tumor growth in vivo, suggesting the potential of ADS-I-loaded wafers for glioma treatment.
Collapse
Affiliation(s)
- Huan Dang
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Ji Wang
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Jiang-Xue Cheng
- Department of Pharmacy, Shaanxi University of Chinese MedicineXianyang, Shaanxi 712046, China
| | - Peng-Yuan Wang
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Li-Fei Cheng
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Caigan Du
- Department of Urologic Sciences, The University of British ColumbiaVancouver, BC, Canada
- Immunity and Infection Research Centre, Vancouver Coastal Health Research InstituteVancouver, BC, Canada
| | - Xiao-Juan Wang
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| |
Collapse
|
39
|
Tanase CP, Neagu AI, Necula LG, Mambet C, Enciu AM, Calenic B, Cruceru ML, Albulescu R. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol 2014; 20:10790-10801. [PMID: 25152582 PMCID: PMC4138459 DOI: 10.3748/wjg.v20.i31.10790] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.
Collapse
|
40
|
Haynes HR, Camelo-Piragua S, Kurian KM. Prognostic and predictive biomarkers in adult and pediatric gliomas: toward personalized treatment. Front Oncol 2014; 4:47. [PMID: 24716189 PMCID: PMC3970023 DOI: 10.3389/fonc.2014.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.
Collapse
Affiliation(s)
- Harry R Haynes
- Department of Neuropathology, Frenchay Hospital , Bristol , UK
| | | | | |
Collapse
|