1
|
Bai W, Guo T, Wang H, Li B, Sun Q, Wu W, Zhang J, Zhou J, Luo J, Zhu M, Lu J, Li P, Dong B, Han S, Pang X, Zhang G, Bai Y, Wang S. S-nitrosylation of AMPKγ impairs coronary collateral circulation and disrupts VSMC reprogramming. EMBO Rep 2024; 25:128-143. [PMID: 38177907 PMCID: PMC10897329 DOI: 10.1038/s44319-023-00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.
Collapse
Affiliation(s)
- Wenwu Bai
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Quan Sun
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanzhou Wu
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jipeng Zhou
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingmin Luo
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Moli Zhu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxiu Lu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shufang Han
- Department of Cardiology, The 960th Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guogang Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongping Bai
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Zhou NQ, Song YT, Liu WZ, Yue RZ, Tian XQ, Yang SC, Yin YL, Li P. Diagnostic ultrasound-mediated microbubble cavitation dose-dependently improves diabetic cardiomyopathy through angiogenesis. Cell Biol Int 2023; 47:178-187. [PMID: 36183368 DOI: 10.1002/cbin.11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Ultrasound-mediated microbubble cavitation (UMMC) induces therapeutic angiogenesis to treat ischemic diseases. This study aimed to investigate whether diagnostic UMMC alleviates diabetic cardiomyopathy (DCM) and, if so, through which mechanisms. DCM model was established by injecting streptozocin into rats to induce hyperglycemia, followed by a high-fat diet. The combined therapy of cation microbubble with low-intensity diagnostic ultrasound (frequency = 4 MHz), with a pulse frequency of 20 Hz and pulse length (PL) of 8, 18, 26, or 36 cycles, was given to rats twice a week for 8 consecutive weeks. Diagnostic UMMC therapy with PL at 8, 18, and 26 cycles, but not 36 cycles, dramatically prevented myocardial fibrosis, improved heart functions, and increased angiogenesis, accompanied by increased levels of PI3K, Akt, and eNOS proteins in the DCM model of rats. In cultured endothelial cells, low-intensity UMMC treatment (PL = 3 cycles, sound pressure level = 50%, mechanical index = 0.82) increased cell viability and activated PI3K-Akt-eNOS signaling. The combination of diagnostic ultrasound with microbubble destruction dose-dependently promoted angiogenesis, thus improving heart function through PI3K-Akt-eNOS signaling in diabetes. Accordingly, diagnostic UMMC therapy should be considered to protect the heart in patients with diabetes.
Collapse
Affiliation(s)
- Nan-Qian Zhou
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Yu-Ting Song
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China.,Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui-Zhu Yue
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Shi-Chang Yang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ya-Ling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China
| |
Collapse
|
3
|
Lopes PDD, de Assis N, de Araújo NF, Moreno OLM, Jorge KTDOS, E Castor MGM, Teixeira MM, Soriani FM, Capettini LDSA, Bonaventura D, Cau SBDA. COX/iNOS dependence for angiotensin-II-induced endothelial dysfunction. Peptides 2022; 157:170863. [PMID: 36028074 DOI: 10.1016/j.peptides.2022.170863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
Vascular dysfunction induced by angiotensin-II can result from direct effects on vascular and inflammatory cells and indirect hemodynamic effects. Using isolated and functional cultured aortas, we aimed to identify the effects of angiotensin-II on cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS) and evaluate their impact on vascular reactivity. Aortic rings from mice were incubated overnight in culture medium containing angiotensin-II (100 nmol/L) or vehicle to induce vascular disfunction. Vascular reactivity of cultured arteries was evaluated in a bath chamber. Immunofluorescence staining for COX-1 and COX-2 was performed. Nitric oxide (NO) formation was approached by the levels of nitrite, a NO end product, and using a fluorescent probe (DAF). Oxidative and nitrosative stress were determined by DHE fluorescence and nitrotyrosine staining, respectively. Arteries cultured with angiotensin-II showed impairment of endothelium-dependent relaxation, which was reversed by the AT1 receptor antagonist. Inhibition of COX and iNOS restored vascular relaxation, suggesting a common pathway in which angiotensin-II triggers COX and iNOS, leading to vasoconstrictor receptors activation. Moreover, using selective antagonists, TP and EP were identified as the receptors involved in this response. Endothelium-dependent contractions of angiotensin-II-cultured aortas were blunted by ibuprofen, and increased COX-2 immunostaining was found in the arteries, indicating endothelium release of vasoconstrictor prostanoids. Angiotensin-II induced increased reactive oxygen species and NO production. An iNOS inhibitor prevented NO enhancement and nitrotyrosine accumulation in arteries stimulated with angiotensin-II. These results confirm that angiotensin-II causes vascular inflammation that culminates in endothelial dysfunction in an iNOS and COX codependent manner.
Collapse
Affiliation(s)
- Patrícia das Dores Lopes
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Naiara de Assis
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Natália Ferreira de Araújo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Olga Lúcia Maquilon Moreno
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Mauro Martins Teixeira
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
4
|
Kong J, Deng Y. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia. Rev Port Cardiol 2022; 41:813-819. [DOI: 10.1016/j.repc.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 10/17/2022] Open
|
5
|
Wang X, Ma Q, Chen L, Wu H, Chen LQ, Qiao F, Luo Y, Zhang ML, Du ZY. Peroxisome proliferator-activated receptor gamma is essential for stress adaptation by maintaining lipid homeostasis in female fish. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159162. [PMID: 35427795 DOI: 10.1016/j.bbalip.2022.159162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 01/04/2023]
Abstract
Reduction of lipid synthesis often causes free fatty acid (FFA) overload, resulting consequential oxidative stress and health damage. Environmental stresses also induce cellular oxidative stress in organisms. The functional peroxisome proliferator-activated receptor gamma (pparg) gene is essential for lipid synthesis and homeostatic lipid maintenance. However, the relationship between the pparg-mediated lipid synthesis and environmental stress adaptation awaits full elucidation. Here, we generated a pparg-knockout zebrafish model. The conversion of free fatty acids into triglycerides in the female pparg mutants was hampered by reduced esterification efficiency, thus induced lipotoxicity, as evidenced by high oxidative stress and damaged health in these mutants, which led to reduced resistance to cold, heat and ammonia nitrogen stresses. Activating pparg in the wild-type female fish via dietary supplementation with rosiglitazone (a pparg agonist), or reducing oxidative stress in the female pparg mutants via dietary supplementation with N-acetylcysteine (an antioxidant), or promoting mitochondrial fatty acid β-oxidation in the female pparg mutants via dietary supplementation with l-carnitine, resulted in significantly reduced cellular injury, and improved environmental stress resistance. Collectively, our findings reveal that the regulative function of pparg in FFA esterification is important in stress resistance in female fish, and highlight the tight correlation existing between lipotoxicity and environmental adaptation.
Collapse
Affiliation(s)
- Xue Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lingyun Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongxia Wu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Jiang Q, Wang L, Si X, Tian JL, Zhang Y, Gui HL, Li B, Tan DH. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds. Eur J Pharmacol 2021; 905:174168. [PMID: 33984300 DOI: 10.1016/j.ejphar.2021.174168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease is one of the most common diseases in the elderly population, and its incidence has rapidly increased with the prolongation of life expectancy. Hyperhomocysteinemia is an independent risk factor for various cardiovascular diseases, including atherosclerosis, and damage to vascular function plays an initial role in its pathogenesis. This review presents the latest knowledge on the mechanisms of vascular injury caused by hyperhomocysteinemia, including oxidative stress, endoplasmic reticulum stress, protein N-homocysteinization, and epigenetic modification, and discusses the therapeutic targets of natural polyphenols. Studies have shown that natural polyphenols in plants can reduce homocysteine levels and regulate DNA methylation by acting on oxidative stress and endoplasmic reticulum stress-related signaling pathways, thus improving hyperhomocysteinemia-induced vascular injury. Natural polyphenols obtained via daily diet are safer and have more practical significance in the prevention and treatment of chronic diseases than traditional drugs.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Ye Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Hai-Long Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
7
|
Yoshitomi H, Zhou J, Nishigaki T, Li W, Liu T, Wu L, Gao M. Morinda citrifolia (Noni) fruit juice promotes vascular endothelium function in hypertension via glucagon-like peptide-1 receptor-CaMKKβ-AMPK-eNOS pathway. Phytother Res 2020; 34:2341-2350. [PMID: 32298014 DOI: 10.1002/ptr.6685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Morinda citrifolia (Noni) is extensively used in herbal remedies to prevent and treat various diseases, including hypertension. The purpose of this study was to investigate the vascular effects of noni fruit juice and characterize the upstream signaling pathways. We measured the systolic blood pressure, diastolic blood pressure, 24-hr urinary nitric oxide (NO) metabolite excretion, bodyweight (BW), and urine examination in SHR.Cg-Leprcp/NDmcr (SHR/cp) rats after 6 weeks noni juice (15 ml/kg) treatment. Noni juice significantly decreased blood pressure and 24-hr urinary NO metabolite without change of BW or urine volume. Furthermore, the noni juice extract (NJE) promoted endothelial vasorelaxation in rat aorta rings and NO product through an increase in phosphorylation of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVECs). NJE might act on a glucagon like peptide-1 receptor (GLP-1R) via Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK signaling with pretreatment of their inhibitors or antagonist in HUVECs. Deacetylasperulosidic acid (DAA) was an active compound in noni juice to improve NO release through same pathway in HUVECs. These results suggested that noni is a novel dietary plant that probably regulates GLP-1R-induced CaMKKβ-AMPK-eNOS pathway to improve endothelium-dependent relaxation, thus reduce the blood pressure probably via one of its responsible ingredient DAA.
Collapse
Affiliation(s)
- Hisae Yoshitomi
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Jingxin Zhou
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affilated to Beijing University of Chinese Medicine, Tongzhou, Beijing, People's Republic of China
| | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Tonghua Liu
- Beijing University of Chinese Medicine, Chaoyang, Beijing, People's Republic of China
| | - Lili Wu
- Beijing University of Chinese Medicine, Chaoyang, Beijing, People's Republic of China
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Department of Cell Life Analytics, Institute for Biosciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
8
|
Kumar A, Pathak R, Palfrey HA, Stone KP, Gettys TW, Murthy SN. High levels of dietary methionine improves sitagliptin-induced hepatotoxicity by attenuating oxidative stress in hypercholesterolemic rats. Nutr Metab (Lond) 2020; 17:2. [PMID: 31921324 PMCID: PMC6945706 DOI: 10.1186/s12986-019-0422-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Both cholesterol (Cho) and methionine (Met, a precursor for homocysteine) are risk factors for fatty liver disease. Since Western diets are rich in Cho and Met, we investigated the hepatic effects of feeding a diet enriched in Met and Cho. Further, based on the reported anti-oxidative and lipid lowering properties of sitagliptin (an antidiabetic drug), we tested whether it could counteract the negative effects of high Cho and Met. We therefore hypothesized that sitagliptin would ameliorate the development of liver pathology that is produced by feeding diets rich in either Cho, Met, or both. Methods Male Sprague Dawley rats were fed ad libitum a) control diet, or b) high Met or c) high Cho, or d) high Met + high Cho diets for 35 days. From day 10 to 35, 50% of rats in each dietary group were gavaged with either vehicle or an aqueous suspension of sitagliptin (100 mg/kg/day). Liver samples were harvested for histological, molecular, and biochemical analyses. Results The high Cho diet produced significant hepatic steatosis which was unaffected by sitagliptin. Contrary to expectation, sitagliptin exacerbated expression of hepatic markers of oxidative stress and fibrosis in rats fed high Cho. Corresponding increases in 4-hydroxynonenal adducts and collagen deposition were demonstrated by immunohistochemistry and sirius red staining. These hepatic changes were absent in rats on the high Met diet and they were comparable to controls. The inclusion of Met in the high Cho diet resulted in significant reduction of the hepatic steatosis, oxidative stress, and fibrosis produced by high Cho alone. Conclusion Sitagliptin exacerbated the effects of high Cho on both oxidative stress and fibrosis, resulting in NASH like symptoms that were significantly reversed by the inclusion of Met.
Collapse
Affiliation(s)
- Avinash Kumar
- 1Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Rashmi Pathak
- 1Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Henry A Palfrey
- 1Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| | - Kirsten P Stone
- 2Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Thomas W Gettys
- 2Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Subramanyam N Murthy
- 1Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA 70813 USA
| |
Collapse
|
9
|
Rosiglitazone Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells by Promoting PPAR- γ Activation and Subsequent Regulation of TGF- β1 and HGF Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4826525. [PMID: 31781338 PMCID: PMC6875173 DOI: 10.1155/2019/4826525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptor- (PPAR-) γ is a ligand-dependent transcription factor, and it has become evident that PPAR-γ agonists have renoprotective effects, but their influence and mechanism during the development of calcium oxalate (CaOx) nephrolithiasis remain unknown. Rosiglitazone (RSG) was used as a representative PPAR-γ agonist in our experiments. The expression of transforming growth factor-β1 (TGF-β1), hepatocyte growth factor (HGF), c-Met, p-Met, PPAR-γ, p-PPAR-γ (Ser112), Smad2, Smad3, pSmad2/3, and Smad7 was examined in oxalate-treated Madin-Darby canine kidney (MDCK) cells and a stone-forming rat model. A CCK-8 assay was used to evaluate the effects of RSG on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were monitored, and lipid peroxidation in renal tissue was detected according to superoxide dismutase and malondialdehyde levels. Moreover, the location and extent of CaOx crystal deposition were evaluated by Pizzolato staining. Our results showed that, both in vitro and in vivo, oxalate impaired PPAR-γ expression and phosphorylation, and then accumulative ROS production was observed, accompanied by enhanced TGF-β1 and reduced HGF. These phenomena could be reversed by the addition of RSG. RSG also promoted cell viability and proliferation and decreased oxidative stress damage and CaOx crystal deposition. However, these protective effects of RSG were abrogated by the PPAR-γ-specific inhibitor GW9662. Our results revealed that the reduction of PPAR-γ activity played a critical role in oxalate-induced ROS damage and CaOx stone formation. RSG can regulate TGF-β1 and HGF/c-Met through PPAR-γ to exert antioxidant effects against hyperoxaluria and alleviate crystal deposition. Therefore, PPAR-γ agonists may be expected to be a novel therapy for nephrolithiasis, and this effect is related to PPAR-γ-dependent suppression of oxidative stress.
Collapse
|
10
|
Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S, Yang L. Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na +/H + exchanger 1 inhibition. Vascul Pharmacol 2019; 115:26-32. [PMID: 30695730 DOI: 10.1016/j.vph.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
AIM Selenium, a trace element involved in important enzymatic activities inside the body, has protective effects against cardiovascular diseases including atherosclerosis. The safe dose of selenium in the organism is very narrow, limiting the supplementation of selenium in diet. The aim of this study is to explore whether selenium quantum dots (SeQDs) prevent atherosclerosis and to investigate the potential mechanisms. METHODS An amorphous form of SeQDs (A-SeQDs) and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Endothelial dysfunction was induced by balloon injury plus high fat diet (HFD) in rats. Atherosclerotic model was established by feeding Apoe-/- mice with HFD. RESULTS Administrations of A-SeQDs but not C-SeQDs dramatically improved endothelium-dependent relaxation, and accelerated would healing in primary endothelial cells isolated from rats, which was comprised by co-treatment of LiCl. Lentivirus-mediated knockdown of Na+/H+ exchanger 1 (NHE1) abolished LiCl-induced endothelial dysfunction in rats. In cultured endothelial cells, A-SeQDs, as well as cariporide, inhibited NHE1 activities, decreased intracellular pH value and Ca2+ concentration, and reduced calpain activity increased by ox-LDL. These protective effects of A-SeQDs were reversed by LiCl treatment in endothelial cells. In Apoe-/- mice feeding with HFD, A-SeQDs prevented endothelial dysfunction and reduced the size of atherosclerotic plaque in aortic arteries. Further, lentivirus-mediated NHE1 gene overexpression abolished the protective effects of A-SeQDs against endothelial dysfunction and atherosclerosis in Apoe-/- mice. CONCLUSION A-SeQDs prevents endothelial dysfunction and the growth of atherosclerotic plaque through NHE1 inhibition and subsequent inactivation of Ca2+/calpain signaling. Clinically, the administration of A-SeQDs is an effective approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - He Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yu-Ming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Ping Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
11
|
Sun Q, Wang K, Pan M, Zhou J, Qiu X, Wang Z, Yang Z, Chen Y, Shen H, Gu Q, Fang L, Zhang G, Bai Y. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. J Cell Mol Med 2018; 22:5208-5219. [PMID: 30589494 PMCID: PMC6201221 DOI: 10.1111/jcmm.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Miao Pan
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Ji‐Peng Zhou
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xue‐Ting Qiu
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen‐Yu Wang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen Yang
- Department of Hypertension and Vascular Diseasethe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yan Chen
- Department of HematologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hong Shen
- Institute of Medical SciencesXiangya HospitalCentral South UniversityChangshaChina
| | - Qi‐Lin Gu
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Long‐Hou Fang
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Guo‐Gang Zhang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
12
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Yu L, Liu H. Perillaldehyde prevents the formations of atherosclerotic plaques through recoupling endothelial nitric oxide synthase. J Cell Biochem 2018; 119:10204-10215. [DOI: 10.1002/jcb.27362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Li Yu
- Department of Physiology, School of Basic Medical Sciences Jinzhou Medical University Jinzhou China
- Institue of Eyes Jinzhou Medical University Jinzhou China
| | - Hua Liu
- Institue of Eyes Jinzhou Medical University Jinzhou China
| |
Collapse
|
14
|
Zhou SN, Lu JX, Wang XQ, Shan MR, Miao Z, Pan GP, Jian X, Li P, Ping S, Pang XY, Bai YP, Liu C, Wang SX. S-Nitrosylation of Prostacyclin Synthase Instigates Nitrate Cross-Tolerance In Vivo. Clin Pharmacol Ther 2018; 105:201-209. [PMID: 29672839 DOI: 10.1002/cpt.1094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Development of nitrate tolerance is a major drawback to nitrate therapy. Prostacyclin (PGI2) is a powerful vasodilator produced from prostaglandin (PGH2) by prostacyclin synthase (PGIS) in endothelial cells. This study aimed to determine the role of PGIS S-nitrosylation in nitrate tolerance induced by nitroglycerin (GTN). In endothelial cells, GTN increased PGIS S-nitrosylation and disturbed PGH2 metabolism, which were normalized by mutants of PGIS cysteine 231/441 to alanine (C231/441A). Clearance of nitric oxide by carboxy-PTIO or inhibition of S-nitrosylation by N-acetyl-cysteine decreased GTN-induced PGIS S-nitrosylation. Enforced expression of mutated PGIS with C231/441A markedly abolished GTN-induced PGIS S-nitrosylation and nitrate cross-tolerance in Apoe-/- mice. Inhibition of cyclooxygenase 1 by aspirin, supplementation of PGI2 by beraprost, and inhibition of PGIS S-nitrosylation by N-acetyl-cysteine improved GTN-induced nitrate cross-tolerance in rats. In patients, increased PGIS S-nitrosylation was associated with nitrate tolerance. In conclusion, GTN induces nitrate cross-tolerance through PGIS S-nitrosylation at cysteine 231/441.
Collapse
Affiliation(s)
- Sheng-Nan Zhou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Jun-Xiu Lu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xue-Qing Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Mei-Rong Shan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xin-Yan Pang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
15
|
Aydın AF, Kondakçı G, Hatipoğlu S, Doğru-Abbasoğlu S, Uysal M. N -Acetylcysteine supplementation decreased brain lipid and protein oxidations produced by experimental homocysteine thiolactone exposure: Relevance to neurodegeneration. PATHOPHYSIOLOGY 2018; 25:125-129. [DOI: 10.1016/j.pathophys.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/29/2022] Open
|
16
|
Zhao Z, Hu J, Gao X, Liang H, Yu H, Liu S, Liu Z. Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2018; 8:30030-30038. [PMID: 28415790 PMCID: PMC5444723 DOI: 10.18632/oncotarget.16273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 01/02/2023] Open
Abstract
Diabetes is one of high risk factors for cardio- and cerebra-vascular diseases, including stroke, atherosclerosis and hypertension. This study was conducted to elucidate whether and how thromboxane receptor (TPr) activation contributes to blood-brain barrier (BBB) dysfunction in diabetes. Human brain microvascular endothelial cells (HBMECs) were cultured. The levels of phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 (p-eNOS) and Akt at Ser473 (p-Akt) were assayed by western blot. Exposure of HBMECs to either high glucose (HG) or thromboxane A2 (TxA2) mimetic U46619, significantly reduced p-eNOS and p-Akt. These effects were abolished by pharmacological or genetic inhibitors of TPr. HG/U46619-induced suppressions of eNOS and Akt phosphorylation were accompanied by upregulation of PTEN and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation or HG. The small GTPase, Rho, was also activated by HG stimulation, and pretreatment of HBMECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued HG-impaired Akt-eNOS signaling. In STZ-injected rats, we found that hyperglycemia dramatically increased the levels of PTEN and PTEN-Ser380/Thr382/383 phosphorylation, reduced both levels of p-eNOS and p-Akt, and disrupted BBB function assayed by Evans blue staining, which were abolished by SQ29548 treatment. We conclude that hyperglycemia activates thromboxane A2 receptor to impair the integrity and function of blood-brain barrier via the ROCK-PTEN-Akt-eNOS pathway.
Collapse
Affiliation(s)
- Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Jue Hu
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Haiya Yu
- Department of Neurology, The People's Hospital of Xishui, Huangang, Hubei, China
| | - Suosi Liu
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China.,Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
17
|
Ateyya H, Nader MA, El-Sherbeeny NA. Beneficial effects of rosiglitazone and losartan combination in diabetic rats. Can J Physiol Pharmacol 2018; 96:215-220. [PMID: 28892640 DOI: 10.1139/cjpp-2017-0332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes with vascular complication needs strict interventions to retard possible serious complications. This research estimated the possible interaction of rosiglitazone (RGN) with losartan (Los) in diabetic rats. Male Sprague-Dawley rats were randomly divided into nondiabetic rats, diabetic rats, and diabetic rats that received RGN, Los, or a combination of RGN and Los. Measurement of serum glucose, vascular adhesion molecule-1, interleukin-6, tumor necrosis factor-α, aortic lipid peroxide (malondialdehyde), glutathione, superoxide dismutase, and total nitrate/nitrite levels was done. Also, the effects of RGN on the relaxation created by acetylcholine and sodium nitroprusside, contraction of isolated aortic rings provoked by phenylephrine and angiotensin II were determined. Results revealed that RGN or Los had a vasodilating effect to variable degrees indicated by enhanced effects on both acetylcholine-induced relaxation and the antagonistic effect on angiotensin II and phenylephrine-stimulated contraction of diabetic aortas with significant amelioration in serum glucose, vascular adhesion molecule-1, interleukin-6, and tumor necrosis factor-α levels and aortic oxidant/antioxidant balance. Treatment of diabetic rats with a combination of RGN and Los produced a more pronounced effect on the measured parameters compared to the diabetic, RGN-, and Los-treated groups. These findings point out the beneficial effects of RGN and Los combination in diabetic rats.
Collapse
Affiliation(s)
- Hayam Ateyya
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- b Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Egypt
| | - Manar A Nader
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- c Faculty of Pharmacy, Mansoura University, Egypt
| | - Nagla A El-Sherbeeny
- a College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia
- d Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
18
|
Wang F, Ma H, Liang WJ, Yang JJ, Wang XQ, Shan MR, Chen Y, Jia M, Yin YL, Sun XY, Zhang JN, Peng QS, Chen YG, Liu LY, Li P, Guo T, Wang SX. Lovastatin upregulates microRNA-29b to reduce oxidative stress in rats with multiple cardiovascular risk factors. Oncotarget 2018; 8:9021-9034. [PMID: 28061433 PMCID: PMC5354712 DOI: 10.18632/oncotarget.14462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
AIMS Proteasome-linked oxidative stress is believed to cause endothelial dysfunction, an early event in cardiovascular diseases (CVD). Statin, as HMG-CoA reductase inhibitor, prevents endothelial dysfunction in CVD. However, the molecular mechanism of statin-mediated normalization of endothelial function is not completely elucidated. METHODS AND RESULTS Lovastatin time/dose-dependently increased miR-29b expression and decreased proteasome activity in cultured human umbilical vein endothelial cells (HUVECs). Anti-miR-29b or overexpression of PA200 abolished lovastatin-induced inhibition of proteasome activity in HUVECs. In contrast, pre-miR-29b or PA200 siRNA mimics these effects of lovastatin on proteasome activity. Lovastatin inhibited oxidative stress induced by multiple oxidants including ox-LDL, H2O2, TNFα, homocysteine thiolactone (HTL), and high glucose (HG), which were reversed by inhibition of miR-29b in HUVECs. Ex vivo analysis indicated that lovastatin normalized the acetylcholine-induced endothelium-dependent relaxation and the redox status in isolated rat aortic arteries exposure to multiple cardiovascular risk factors. In vivo analysis revealed that administration of lovastatin remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats with hyperglycemia, dyslipidemia, and hyperhomocysteinemia, as well as increased miR-29b expressions, reduced PA200 protein levels, and suppression of proteasome activity in aortic tissues. CONCLUSION Upregulation of miR-29b expression is a common mechanism contributing to endothelial dysfunction induced by multiple cardiovascular risk factors through PA200-dependent proteasome-mediated oxidative stress, which is prevented by lovastatin.
Collapse
Affiliation(s)
- Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Hui Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Wen-Jing Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Jing-Jing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Min Jia
- Department of Rehabilitation Medicine, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ya-Ling Yin
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xue-Ying Sun
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Jia-Ning Zhang
- Biology and Chemistry, Denison University, Granville, OH, USA
| | - Qi-Sheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
19
|
Cui S, Li W, Wang P, Lv X, Gao Y, Huang G. Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells. Mol Cell Biochem 2017; 444:77-86. [DOI: 10.1007/s11010-017-3232-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/24/2017] [Indexed: 02/02/2023]
|
20
|
Rong R, Zhou Q, Lin J, Huang N, Li W, Qiu Y, Yu X, Mao H. Maintained Folic Acid Supplementation Reduces the Risk of Mortality in Continuous Ambulatory Peritoneal Dialysis Patients. Blood Purif 2017; 45:28-35. [PMID: 29161705 DOI: 10.1159/000480222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The association between folic acid (FA) supplementation and mortality in continuous ambulatory peritoneal dialysis (CAPD) patients is unclear. METHODS FA exposure was calculated as a percentage of cumulative duration of drug usage to total follow-up duration (FA%). A total of 1,358 patients were classified by a cutoff value of FA%. The association of FA with mortality was evaluated using Cox proportional hazards models. RESULTS The cutoff value of FA% for predicting mortality was <34% at a median follow-up of 40.7 months. FA ≥34% was associated with decreased risk for all-cause (adjusted hazard ratios [HRs] 95% CI 0.64 [0.48-0.85] and cardiovascular mortality 0.67 (95% CI 0.47-0.97). Moreover, the adjusted HRs per 10% higher FA for all-cause and cardiovascular mortality were 0.925 (95% CI 0.879-0.973) and 0.926 (95% CI 0.869-0.988), respectively. CONCLUSIONS Longer period of FA supplementation led to a reduction in risk of both all-cause and cardiovascular mortality in CAPD patients.
Collapse
Affiliation(s)
- Rong Rong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Antagonist of thromboxane A2 receptor by SQ29548 lowers DOCA-induced hypertension in diabetic rats. Eur J Pharmacol 2017; 815:298-303. [DOI: 10.1016/j.ejphar.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
|
22
|
Ma H, Liang WJ, Shan MR, Wang XQ, Zhou SN, Chen Y, Guo T, Li P, Yu HY, Liu C, Yin YL, Wang YL, Dong B, Pang XY, Wang SX. Pravastatin activates activator protein 2 alpha to augment the angiotensin II-induced abdominal aortic aneurysms. Oncotarget 2017; 8:14294-14305. [PMID: 28179583 PMCID: PMC5362406 DOI: 10.18632/oncotarget.15104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/02/2023] Open
Abstract
We have previously reported that activation of AMP-activated kinase alpha 2 (AMPKa2) by nicotine or angiotensin II (AngII) instigates formation of abdominal aortic aneurysms (AAA) in Apoe−/− mice. Statins, used to treat hyperlipidemia widely, activate AMPK in vascular cells. We sought to examine the effects of pravastatin on AAA formation and uncover the molecular mechanism. The AAA model was induced by AngII and evaluated by incidence, elastin degradation, and maximal abdominal aortic diameter in Apoe−/− mice. The phosphorylated levels of AMPKa2 and activator protein 2 alpha (AP-2a) were examined in cultured vascular smooth muscle cells (VSMCs) or in mice. We observed that pravastatin (50 mg/kg/day, 8 weeks) remarkably increased the AngII-induced AAA incidence in mice. In VSMCs, pravastatin increased the levels of pAMPK, pAP-2a, and MMP2 in both basal and AngII-stressed conditions, which were abolished by tempol and compound C. Pravastatin-upregulated MMP2 was abrogated by AMPKa2 or AP-2a siRNA. Lentivirus-mediated gene silence of AMPKa2 or AP-2a abolished pravastatin-worsened AAA formations in AngII-infused Apoe−/− mice. Clinical investigations demonstrated that both AMPKa2 and AP-2a phosphorylations were increased in AAA patients or human subjects taking pravastatin. In conclusion, pravastatin promotes AAA formation through AMPKa2-dependent AP-2a activations.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China.,Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wen-Jing Liang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Mei-Rong Shan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Xue-Qing Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ya-Ling Yin
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu-Lin Wang
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Dong
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xin-Yan Pang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China.,College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
23
|
Cui S, Li W, Lv X, Wang P, Huang G, Gao Y. Folic acid attenuates homocysteine and enhances antioxidative capacity in atherosclerotic rats. Appl Physiol Nutr Metab 2017; 42:1015-1022. [DOI: 10.1139/apnm-2017-0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic disease that can seriously endanger human life. Folic acid supplementation modulates several disorders, including atherosclerosis, via its antiapoptotic and antioxidative properties. This study investigated whether folic acid alleviates atherogenesis by restoring homocysteine levels and antioxidative capacity in atherosclerosis Wistar rats. To this end, 28 Wistar rats were randomly divided into 4 groups (7 rats/group) as follows: (i) wild-type group, fed only the AIN-93 semi-purified rodent diet (folic acid: 2.1 mg/kg); (ii) high-fat + folic acid-deficient group (HF+DEF) (folic acid: 0.2 mg/kg); (iii) high-fat + normal folic acid group (folic acid: 2.1 mg/kg); and (iv) high-fat + folic acid-supplemented group (folic acid: 4.2 mg/kg). After 12 weeks, histopathological changes in the atherosclerotic lesions of the aortic arch were determined. In addition, serum folate levels, plasma homocysteine levels, plasma S-adenosyl-homocysteine levels, antioxidant status, oxidant status, and lipid profiles were evaluated. The results show aggravated atherosclerotic lesions in the HF+DEF group. Folic acid supplementation increased concentrations of serum folate. Further, folic acid supplementation increased high-density lipoprotein-cholesterol, decreased plasma homocysteine levels, and improved antioxidant capacity in atherogenic rats. These findings are consistent with the hypothesis that folic acid alleviates atherogenesis by reducing plasma homocysteine levels and improving antioxidant capacity in rats fed a high-fat diet.
Collapse
Affiliation(s)
- Shanshan Cui
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Pengyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
24
|
Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol 2017; 175:1173-1189. [PMID: 28836260 DOI: 10.1111/bph.13988] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022] Open
Abstract
Homocysteine is a sulphur-containing non-proteinogenic amino acid. Hyperhomocysteinaemia (HHcy), the pathogenic elevation of plasma homocysteine as a result of an imbalance of its metabolism, is an independent risk factor for various vascular diseases, such as atherosclerosis, hypertension, vascular calcification and aneurysm. Treatments aimed at lowering plasma homocysteine via dietary supplementation with folic acids and vitamin B are more effective in preventing vascular disease where the population has a normally low folate consumption than in areas with higher dietary folate. To date, the mechanisms of HHcy-induced vascular injury are not fully understood. HHcy increases oxidative stress and its downstream signalling pathways, resulting in vascular inflammation. HHcy also causes vascular injury via endoplasmic reticulum stress. Moreover, HHcy up-regulates pathogenic genes and down-regulates protective genes via DNA demethylation and methylation respectively. Homocysteinylation of proteins induced by homocysteine also contributes to vascular injury by modulating intracellular redox state and altering protein function. Furthermore, HHcy-induced vascular injury leads to neuronal damage and disease. Also, an HHcy-activated sympathetic system and HHcy-injured adipose tissue also cause vascular injury, thus demonstrating the interactions between the organs injured by HHcy. Here, we have summarized the recent developments in the mechanisms of HHcy-induced vascular injury, which are further considered as potential therapeutic targets in this condition. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Zhu ML, Yin YL, Ping S, Yu HY, Wan GR, Jian X, Li P. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens 2017; 39:672-679. [PMID: 28722488 DOI: 10.1080/10641963.2017.1313853] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine has several preventive effects on cardiovascular diseases. Increased expression of miR-29b has been reported to attenuate cardiac remodeling after myocardial infarction (MI). We hypothesized that berberine via an miR-29b-dependent mechanism promotes angiogenesis and improves heart functions in mice after MI. METHODS The MI model was established in mice by ligation of left anterior descending coronary artery. The expression of miR-29b was examined by RT-qPCR. Angiogenesis was assessed by immunohistochemistry. RESULTS Berberine increased miR-29b expression and promoted cell proliferations and migrations in cultured endothelial cells, which were abolished by miR-29b antagomir or AMP-activated protein kinase inhibitor compound C. In mice following MI, administration of berberine significantly increased miR-29b expressional level, promoted angiogenesis, reduced infarct size, and improved heart functions after 14 postoperative days. Importantly, these in vivo effects of berberine were ablated by antagonism of miR-29b. CONCLUSION Berberine via upregulation of miR-29b promotes ischemia-induced angiogenesis and improves heart functions.
Collapse
Affiliation(s)
- Mo-Li Zhu
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Ya-Ling Yin
- b School of Basic Medical Sciences , Xinxiang Medical University , Xinxiang , Henan , China
| | - Song Ping
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Hai-Ya Yu
- c Department of Neurology , The People's Hospital of Xishui County , Huangang , Hubei , China
| | - Guang-Rui Wan
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Xu Jian
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Peng Li
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| |
Collapse
|
26
|
Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens 2017; 39:312-318. [PMID: 28513223 DOI: 10.1080/10641963.2016.1246558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. METHODS AND RESULTS Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser1177 and Akt at Ser473. These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser380/Thr382/383 phosphorylation, and dephosphorylation of Akt (at Ser473) and eNOS (at Ser1177). Importantly, administration of TPr antagonist blocked these changes. CONCLUSION We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.
Collapse
Affiliation(s)
- Xiaona Xie
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China.,b The First Hospital of Jilin University , Changchun , China
| | - Wanchun Sun
- c Key Laboratory of Zoonosis, Ministry of Education , Institute of Zoonosis, Jilin University , Changchun , China
| | - Jun Wang
- d Shenzhen Center for Chronic Disease Control , Shenzhen , China
| | - Xiaoou Li
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Xiaofeng Liu
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Ning Liu
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China
| |
Collapse
|
27
|
Yu W, Liu X, Feng L, Yang H, Yu W, Feng T, Wang S, Wang J, Liu N. Glycation of paraoxonase 1 by high glucose instigates endoplasmic reticulum stress to induce endothelial dysfunction in vivo. Sci Rep 2017; 7:45827. [PMID: 28374834 PMCID: PMC5379182 DOI: 10.1038/srep45827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) modulates low-density lipoprotein and cell membrane oxidation through the action of paraoxonase-1 (PON1). Endoplasmic reticulum (ER) stress has been linked to a wide range of human pathologies including diabetes, obesity, and atherosclerosis. Previous studies have reported that PON1 is glycated in diabetes. The aim of this study is to investigate whether and how PON1 glycation contributes to endothelial dysfunction in diabetes. ER stress markers were monitored by western blot. Endothelial function was determined by organ bath. Incubation of recombinant PON1 proteins with high glucose increased PON1 glycation and reduced PON1 activity. Exposure of HUVECs to glycated PON1 induced prolonged ER stress and reduced SERCA activity, which were abolished by tempol, apocynin, BAPTA, and p67 and p22 siRNAs. Chronic administration of amino guanidine or 4-PBA prevented endothelial dysfunction in STZ-injected rats. Importantly, injection of glycated PON1 but not native PON1 induced aberrant ER stress and endothelial dysfunction in rats, which were attenuated by tempol, BAPTA, and 4-PBA. In conclusion, glycation of PON1 by hyperglycemia induces endothelial dysfunction through ER stress. In perspectives, PON1 glycation is a novel risk factor of hyperglycemia-induced endothelial dysfunction. Therefore, inhibition of oxidative stress, chelating intracellular Ca2+, and ER chaperone would be considered to reduce vascular complications in diabetes.
Collapse
Affiliation(s)
- Wei Yu
- Central Laboratory, Second Hospital, Jilin University, Changchun 130041, China.,Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xiaoli Liu
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Liru Feng
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Hui Yang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Weiye Yu
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Tiejian Feng
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Shuangxi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Ning Liu
- Central Laboratory, Second Hospital, Jilin University, Changchun 130041, China
| |
Collapse
|
28
|
Yin YL, Zhu ML, Wan J, Zhang C, Pan GP, Lu JX, Ping S, Chen Y, Zhao FR, Yu HY, Guo T, Jian X, Liu LY, Zhang JN, Wan GR, Wang SX, Li P. Traditional Chinese medicine xin-mai-jia recouples endothelial nitric oxide synthase to prevent atherosclerosis in vivo. Sci Rep 2017; 7:43508. [PMID: 28252100 PMCID: PMC5333158 DOI: 10.1038/srep43508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Endothelial dysfunction, which is caused by endothelial nitric oxide synthase (eNOS) uncoupling, is an initial step in atherosclerosis. This study was designed to explore whether Chinese medicine xin-mai-jia (XMJ) recouples eNOS to exert anti-atherosclerotic effects. Pretreatment of XMJ (25, 50, 100 μg/ml) for 30 minutes concentration-dependently activated eNOS, improved cell viabilities, increased NO generations, and reduced ROS productions in human umbilical vein endothelial cells incubated with H2O2 for 2 hours, accompanied with restoration of BH4. Importantly, these protective effects produced by XMJ were abolished by eNOS inhibitor L-NAME or specific eNOS siRNA in H2O2-treated cells. In ex vivo experiments, exposure of isolated aortic rings from rats to H2O2 for 6 hours dramatically impaired acetylcholine-induced vasorelaxation, reduced NO levels and increased ROS productions, which were ablated by XMJ in concentration-dependent manner. In vivo analysis indicated that administration of XMJ (0.6, 2.0, 6.0 g/kg/d) for 12 weeks remarkably recoupled eNOS and reduced the size of carotid atherosclerotic plaque in rats feeding with high fat diet plus balloon injury. In conclusion, XMJ recouples eNOS to prevent the growth of atherosclerosis in rats. Clinically, XMJ is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Ya-Ling Yin
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mo-Li Zhu
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia Wan
- Department of Drug and Cosmetics Supervision, Henan Food and Drug Administration, Zhengzhou, 450018, China
| | - Chong Zhang
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guo-Pin Pan
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun-Xiu Lu
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Song Ping
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fan-Rong Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xu Jian
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Ying Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China.,Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jia-Ning Zhang
- Biology and Chemistry, Denison University, Granville, OH, USA
| | - Guang-Rui Wan
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Peng Li
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
29
|
Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt. Acta Pharmacol Sin 2017; 38:182-191. [PMID: 27941804 DOI: 10.1038/aps.2016.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt-/- mice were fed a normal diet containing RSV (400 mg·kg-1·d-1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5-20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5-20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt-/- mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production.
Collapse
|
30
|
Culha MG, Ozbek E. Re: effects of silodosin, a selective alpha-1a adrenoceptor antagonist, on erectile function in a rat model of partial bladder outlet obstruction. Neurourol Urodyn 2017; 36:1950-1951. [PMID: 28102578 DOI: 10.1002/nau.23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mehmet Gokhan Culha
- Department of Urology, Istanbul Training & Research Hospital, Istanbul, Turkey
| | - Emin Ozbek
- Department of Urology, Istanbul Training & Research Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0219-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Li P, Yin YL, Guo T, Sun XY, Ma H, Zhu ML, Zhao FR, Xu P, Chen Y, Wan GR, Jiang F, Peng QS, Liu C, Liu LY, Wang SX. Inhibition of Aberrant MicroRNA-133a Expression in Endothelial Cells by Statin Prevents Endothelial Dysfunction by Targeting GTP Cyclohydrolase 1 in Vivo. Circulation 2016; 134:1752-1765. [PMID: 27765794 PMCID: PMC5120771 DOI: 10.1161/circulationaha.116.017949] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation. Methods: Endothelial function was assessed by measuring acetylcholine-induced vasorelaxation in the organ chamber. MiR-133a expression was assessed by quantitative reverse transcription polymerase chain reaction and fluorescence in situ hybridization. Results: We first demonstrated that GCH1 mRNA is a target of miR-133a. In endothelial cells, miR-133a was robustly induced by cytokines/oxidants and inhibited by lovastatin. Furthermore, lovastatin upregulated GCH1 and tetrahydrobiopterin, and recoupled endothelial nitric oxide synthase in stressed endothelial cells. These actions of lovastatin were abolished by enforced miR-133a expression and were mirrored by a miR-133a antagomir. In mice, hyperlipidemia- or hyperglycemia-induced ectopic miR-133a expression in the vascular endothelium, reduced GCH1 protein and tetrahydrobiopterin levels, and impaired endothelial function, which were reversed by lovastatin or miR-133a antagomir. These beneficial effects of lovastatin in mice were abrogated by in vivo miR-133a overexpression or GCH1 knockdown. In rats, multiple cardiovascular risk factors including hyperglycemia, dyslipidemia, and hyperhomocysteinemia resulted in increased miR-133a vascular expression, reduced GCH1 expression, uncoupled endothelial nitric oxide synthase function, and induced endothelial dysfunction, which were prevented by lovastatin. Conclusions: Statin inhibits aberrant miR-133a expression in the vascular endothelium to prevent endothelial dysfunction by targeting GCH1. Therefore, miR-133a represents an important therapeutic target for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Li
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Ya-Ling Yin
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Tao Guo
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Xue-Ying Sun
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Hui Ma
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Mo-Li Zhu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Fan-Rong Zhao
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Ping Xu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Yuan Chen
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Guang-Rui Wan
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Fan Jiang
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Qi-Sheng Peng
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Chao Liu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Li-Ying Liu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Shuang-Xi Wang
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.).
| |
Collapse
|
33
|
Xu BC, Long HB, Luo KQ. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway. Sci Rep 2016; 6:29589. [PMID: 27435826 PMCID: PMC4951646 DOI: 10.1038/srep29589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice.
Collapse
Affiliation(s)
- Bing-Can Xu
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Bao Long
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Qin Luo
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Li H, He C, Wang J, Li X, Yang Z, Sun X, Fang L, Liu N. Berberine activates peroxisome proliferator-activated receptor gamma to increase atherosclerotic plaque stability in Apoe -/- mice with hyperhomocysteinemia. J Diabetes Investig 2016; 7:824-832. [PMID: 27181586 PMCID: PMC5089944 DOI: 10.1111/jdi.12516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION An elevated level of plasma homocysteine has long been suspected as a metabolic risk factor for the development of atherosclerotic vascular diseases in diabetes. Berberine (BBR) has several preventive effects on cardiovascular diseases. The effects of BBR on atherosclerotic plaque stability increased by homocysteine thiolactone (HTL) remain unknown. MATERIALS AND METHODS The model of atherosclerotic vulnerable plaque was induced by placing a collar around the carotid artery in Apoe-/- mice. Endothelium-dependent relaxation was assayed by organ chamber. RESULTS Homocysteine thiolactone (50 mg/kg/day, 8 weeks) reduced the atherosclerotic plaque stability in the carotid artery of Apoe-/- mice, which was reversed by BBR administration (1.0 g/kg/day). In vivo and ex vivo experiments showed that HTL dramatically reduced acetylcholine-induced endothelium-dependent relaxation and superoxide dismutase activity, and increased malondialdehyde content, which were inhibited by BBR. Importantly, all effects induced by BBR were abolished by GW9662, an antagonist of peroxisome proliferator-activated receptor-γ. Incubation of cultured endothelial cells with HTL significantly reduced cell viabilities and enhanced production of reactive oxygen species. Pretreatment of cells with BBR dose-dependently reversed HTL-induced detrimental effects, which were GW9662-reversible. CONCLUSIONS Berberine increases atherosclerotic plaque stability in hyperhomocysteinemia mice, which is related to the activation of peroxisome proliferator-activated receptor-γ and subsequent suppression of oxidative stress in endothelial cells.
Collapse
Affiliation(s)
- Hongjun Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chengyan He
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jingying Wang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoou Li
- Tumor Hospital of Jilin Province, The Second Hospital of Jilin University, Changchun, China
| | - Zhaowei Yang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoying Sun
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Fang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
35
|
Jin P, Li T, Li X, Shen X, Zhao Y. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Exp Ther Med 2016; 11:2163-2170. [PMID: 27284297 PMCID: PMC4887798 DOI: 10.3892/etm.2016.3236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction is a major contributor to morbidity and mortality in diabetes, which is characterized by inadequate angiogenesis and consequent poor blood reperfusion in the diabetic ischemic heart. The aim of the present study was to investigate the effect that oxidative stress in endothelial progenitor cells (EPCs) has on cardiac angiogenesis in diabetic mice. EPCs derived from diabetic mice revealed reductions in superoxide dismutase (SOD) expression levels and activity compared with those from normal mice. An endothelial tube formation assay showed that angiogenesis was markedly delayed for diabetic EPCs, compared with normal controls. EPCs subjected to various pretreatments were tested as a cell therapy in a diabetic mouse model of myocardial infarction. Induction of oxidative stress in normal EPCs by H2O2 or small interfering RNA-mediated knockdown of SOD reduced their angiogenic activity in the ischemic myocardium of the diabetic mice. Conversely, cell therapy using EPCs from diabetic mice following SOD gene overexpression or treatment with the antioxidant Tempol normalized their ability to promote angiogenesis. These results indicate that decreased expression levels of SOD in EPCs contribute to impaired angiogenesis. In addition, normalization of diabetic EPCs by ex vivo SOD gene therapy accelerates the ability of the EPCs to promote angiogenesis and improve cardiac function when used as a cell therapy following myocardial infarction in diabetic mice.
Collapse
Affiliation(s)
- Peng Jin
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tao Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueqi Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinghua Shen
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanru Zhao
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
36
|
Acute effect of rosiglitazone on relaxation responses in hypercholesterolemic corpus cavernosum. Int J Impot Res 2016; 28:110-3. [PMID: 27030054 DOI: 10.1038/ijir.2016.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/21/2015] [Accepted: 02/23/2016] [Indexed: 11/09/2022]
Abstract
Thiazolidinediones (TZDs) improve vascular endothelial dysfunction through non-genomic effects of peroxisomal proliferator-activated receptor γ. This study investigated the acute effect of one of the TZD, rosiglitazone, on endothelium-dependent relaxation response of corpus cavernosum (CC) in hypercholesterolemic rabbits. New Zealand rabbits were divided into two groups randomly as control and cholesterol groups. Hypercholesterolemia was induced by feeding rabbits with 2% cholesterol diet (w/w) for 6 weeks. Endothelium-dependent and -independent relaxation response of CC were evaluated in the presence of rosiglitazone by organ bath studies with cumulative doses of acetylcholine (Ach) and sodium nitroprusside (SNP). Maximal relaxation (Emax) response to Ach significantly decreased owing to hypercholesterolemia in CC tissues. However, in vitro incubation of rosiglitazone with different concentrations (0.1, 1 and 10 μm) did not improve the Ach-dependent Emax responses in hypercholesterolemic rabbit CC. Surprisingly, rosiglitazone caused a significant decrease in Ach-dependent relaxation in healthy CC. Emax responses to SNP did not differ in the presence of rosiglitazone in both the control and hypercholesterolemic groups. Rosiglitazone does not improve hypercholesterolemia-induced endothelial dysfunction in CC tissues while it dose-dependently impairs endothelium-dependent relaxation in healthy CC tissue.
Collapse
|
37
|
Liu Z, Li P, Zhao ZH, Zhang Y, Ma ZM, Wang SX. Vitamin B6 Prevents Endothelial Dysfunction, Insulin Resistance, and Hepatic Lipid Accumulation in Apoe (-/-) Mice Fed with High-Fat Diet. J Diabetes Res 2016; 2016:1748065. [PMID: 26881239 PMCID: PMC4735993 DOI: 10.1155/2016/1748065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022] Open
Abstract
Backgrounds. VitB6 deficiency has been associated with a number of adverse health effects. However, the effects of VitB6 in metabolic syndrome are poorly understood. Methods. VitB6 (50 mg/kg/day) was given to Apoe (-/-) mice with hkdigh-fat diet (HFD) for 8 weeks. Endothelial dysfunction, insulin resistance, and hepatic lipid contents were determined. Results. VitB6 administration remarkably increased acetylcholine-induced endothelium-dependent relaxation and decreased random blood glucose level in Apoe (-/-) mice fed with HFD. In addition, VitB6 improved the tolerance of glucose and insulin, normalized the histopathology of liver, and reduced hepatic lipid accumulation but did not affect the liver functions. Clinical and biochemical analysis indicated that the levels of VitB6 were decreased in patients with fatty liver. Conclusions. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe (-/-) mice fed with HFD. Supplementation of VitB6 should be considered to prevent metabolic syndrome.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Hong Zhao
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Yu Zhang
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Zhi-Min Ma
- Division of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215000, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
- *Shuang-Xi Wang:
| |
Collapse
|
38
|
Li P, Chen GR, Wang F, Xu P, Liu LY, Yin YL, Wang SX. Inhibition of NA(+)/H(+) Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats. J Diabetes Res 2016; 2016:1802036. [PMID: 26697498 PMCID: PMC4677205 DOI: 10.1155/2016/1802036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022] Open
Abstract
It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1.
Collapse
Affiliation(s)
- Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Geng-Rong Chen
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
| | - Ping Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
- Medical College of San-Quan, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Ling Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
- *Shuang-Xi Wang:
| |
Collapse
|
39
|
Wang R, Yan Z, Wu X, Ji K, Wang H, Zang B. Rosiglitazone attenuates renal injury caused by hyperlipidemic pancreatitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4332-4343. [PMID: 26191125 PMCID: PMC4502997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Hyperlipidemic pancreatitis (HP) is a serious inflammatory disease with very high mortality and multiple organ injuries including renal injury. Rosiglitazone (Ros), an agonist of peroxisome proliferator activated receptor-γ (PPAR-γ), was reported to show a protective role against pancreatitis. However, whether Ros has an effect on renal injury caused by HP is not yet clear. In the present study, the function of Ros was explored using ELISA, RT-PCR, western blot, PAS staining and immunohistochemistry. Results of this study showed that Ros could inhibit the activation of NF-κB and MAPK P38 signaling pathways, relieve inflammatory response and inhibit cell apoptosis, thus attenuating renal injury caused by HP. This study suggested that Ros might be a promising drug for the treatment of renal injury caused by HP and also laid theoretical foundation for the development of renal injury treatment.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| | - Kaiqiang Ji
- Department of Critical Care Medicine, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| | - Haiyuan Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical UniversityShenyang 110004, People’s Republic of China
| |
Collapse
|