1
|
Hosseini MS, Sanaat Z, Akbarzadeh MA, Vaez-Gharamaleki Y, Akbarzadeh M. Histone deacetylase inhibitors for leukemia treatment: current status and future directions. Eur J Med Res 2024; 29:514. [PMID: 39456044 PMCID: PMC11515273 DOI: 10.1186/s40001-024-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Leukemia remains a major therapeutic challenge in clinical oncology. Despite significant advancements in treatment modalities, leukemia remains a significant cause of morbidity and mortality worldwide, as the current conventional therapies are accompanied by life-limiting adverse effects and a high risk of disease relapse. Histone deacetylase inhibitors have emerged as a promising group of antineoplastic agents due to their ability to modulate gene expression epigenetically. In this review, we explore these agents, their mechanisms of action, pharmacokinetics, safety and clinical efficacy, monotherapy and combination therapy strategies, and clinical challenges associated with histone deacetylase inhibitors in leukemia treatment, along with the latest evidence and ongoing studies in the field. In addition, we discuss future directions to optimize the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zhang L, Guan L, Wang Y, Niu MM, Yan J. Discovery of a dual-target DYRK2 and HDAC8 inhibitor for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116839. [PMID: 38889633 DOI: 10.1016/j.biopha.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Changzhi People's Hospital, Changzhi Medical College, Changzhi 046000, China.
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhu Yan
- Department of Pain Treatment, Changzhi Hospital of Traditional Chinese Medicine, Changzhi 046000, China.
| |
Collapse
|
3
|
Pane R, Laib L, Formoso K, Détrait M, Sainte-Marie Y, Bourgailh F, Ruffenach N, Faugeras H, Simon I, Lhuillier E, Lezoualc'h F, Conte C. Macromolecular Complex Including MLL3, Carabin and Calcineurin Regulates Cardiac Remodeling. Circ Res 2024; 134:100-113. [PMID: 38084599 DOI: 10.1161/circresaha.123.323458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Cardiac hypertrophy is an intermediate stage in the development of heart failure. The structural and functional processes occurring in cardiac hypertrophy include extensive gene reprogramming, which is dependent on epigenetic regulation and chromatin remodeling. However, the chromatin remodelers and their regulatory functions involved in the pathogenesis of cardiac hypertrophy are not well characterized. METHODS Protein interaction was determined by immunoprecipitation assay in primary cardiomyocytes and mouse cardiac samples subjected or not to transverse aortic constriction for 1 week. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) experiments were performed on the chromatin of adult mouse cardiomyocytes. RESULTS We report that the calcium-activated protein phosphatase CaN (calcineurin), its endogenous inhibitory protein carabin, the STK24 (STE20-like protein kinase 3), and the histone monomethyltransferase, MLL3 (mixed lineage leukemia 3) form altogether a macromolecular complex at the chromatin of cardiomyocytes. Under basal conditions, carabin prevents CaN activation while the serine/threonine kinase STK24 maintains MLL3 inactive via phosphorylation. After 1 week of transverse aortic constriction, both carabin and STK24 are released from the CaN-MLL3 complex leading to the activation of CaN, dephosphorylation of MLL3, and in turn, histone H3 lysine 4 monomethylation. Selective cardiac MLL3 knockdown mitigates hypertrophy, and chromatin immunoprecipitation and DNA sequencing analysis demonstrates that MLL3 is de novo recruited at the transcriptional start site of genes implicated in cardiomyopathy in stress conditions. We also show that CaN and MLL3 colocalize at chromatin and that CaN activates MLL3 histone methyl transferase activity at distal intergenic regions under hypertrophic conditions. CONCLUSIONS Our study reveals an unsuspected epigenetic mechanism of CaN that directly regulates MLL3 histone methyl transferase activity to promote cardiac remodeling.
Collapse
Affiliation(s)
- Roberto Pane
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Loubna Laib
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Karina Formoso
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Maximin Détrait
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Yannis Sainte-Marie
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Florence Bourgailh
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Nolan Ruffenach
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Hanamée Faugeras
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Ilias Simon
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Emeline Lhuillier
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
- GeT-Sante, Plateforme Genome et Transcriptome, GenoToul, Toulouse, France (E.L.)
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Caroline Conte
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| |
Collapse
|
4
|
El Omari N, Bakrim S, Khalid A, Albratty M, Abdalla AN, Lee LH, Goh KW, Ming LC, Bouyahya A. Anticancer clinical efficiency and stochastic mechanisms of belinostat. Biomed Pharmacother 2023; 165:115212. [PMID: 37541175 DOI: 10.1016/j.biopha.2023.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia.
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia.
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Abdelhakim Bouyahya
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
5
|
Aitken TJ, Crabtree JE, Jensen DM, Hess KH, Leininger BR, Tessem JS. Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 KIP1. Biol Cell 2021; 113:507-521. [PMID: 34523154 DOI: 10.1111/boc.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional β-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of β-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready β-cells. Therefore, inducing β-cell proliferation ex vivo could be used to expand functional β-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young β-cells; however, aged β-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged β-cell proliferation is imperative. RESULTS We demonstrate that aged rat (5-month-old) β-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) β-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat β-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE As the majority of transplant-ready β-cells come from aged donors, it is imperative that we understand why aged β-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in β-cell aging, which corresponds with impaired β-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged β-cells could be leveraged to decrease p27KIP1 levels and enhance β-cell proliferation.
Collapse
Affiliation(s)
- Talon J Aitken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Des Moines University, Des Moines, IA, 50312, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Daelin M Jensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Biomedical Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Kavan H Hess
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Brennan R Leininger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Dental Education Program, UCLA School of Dentistry, Los Angeles, CA, 90024, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
6
|
García-Giménez JL, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med 2021; 170:6-18. [PMID: 33689846 DOI: 10.1016/j.freeradbiomed.2021.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- José-Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain
| | - Carlos Romá-Mateo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
7
|
Zhang T, Ma D, Wei D, Lu T, Yu K, Zhang Z, Wang W, Fang Q, Wang J. CUDC-101 overcomes arsenic trioxide resistance via caspase-dependent promyelocytic leukemia-retinoic acid receptor alpha degradation in acute promyelocytic leukemia. Anticancer Drugs 2021; 31:158-168. [PMID: 31584454 DOI: 10.1097/cad.0000000000000847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although arsenic trioxide (ATO) treatment has transformed acute promyelocytic leukemia (APL) from the most fatal to the most curable hematological cancer, many high-risk APL patients who fail to achieve a complete molecular remission or relapse become resistant to ATO. Herein, we report that 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) exhibits specific anticancer effects on APL and ATO-resistant APL in vitro and in vivo, while showing negligible cytotoxic effect on the noncancerous cells including normal CD34 cells and bone marrow mesenchymal stem cells from APL patients. Further mechanistic studies show that CUDC-101 triggers caspase-dependent degradation of the promyelocytic leukemia-retinoic acid receptor alpha fusion protein. As a result, APL and ATO-resistant APL cells undergo apoptosis upon CUDC-101 treatment and this apoptosis-inducing effect is even stronger than that of ATO. Finally, using a xenograft mouse model, we demonstrated that CUDC-101 significantly represses leukemia development in vivo. In conclusion, these results suggested that CUDC-101 can serve as a potential candidate drug for APL, particularly for ATO-resistant APL.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre
| | - Dan Ma
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University
| | - Danna Wei
- Department of Hematology and Oncology, Guiyang Maternal and Child Health Hospital
| | - Tingting Lu
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University
| | - Kunlin Yu
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University
| | - Zhaoyuan Zhang
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre
| | - Weili Wang
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University.,Department of Hematology, Affiliated Hospital of Guizhou Medical University.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre
| |
Collapse
|
8
|
Valiulienė G, Vitkevičienė A, Navakauskienė R. The epigenetic treatment remodel genome-wide histone H4 hyper-acetylation patterns and affect signaling pathways in acute promyelocytic leukemia cells. Eur J Pharmacol 2020; 889:173641. [PMID: 33045196 DOI: 10.1016/j.ejphar.2020.173641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023]
Abstract
Although majority of acute promyelocytic leukemia (APL) patients achieve complete remission after the standard treatment, 5-10% of patients are shown to relapse or develop resistance to treatment. In such cases, medications that target epigenetic processes could become an appealing supplementary approach. In this study, we tested the anti-leukemic activity of histone deacetylase inhibitor Belinostat (PXD101) and histone methyltransferase inhibitor 3-Deazaneplanocin A combined with all-trans retinoic acid in APL cells NB4, promyelocytes resembling HL-60 cells and APL patients' cells. After HL-60 and NB4 cell treatment, ChIP-sequencing was performed using antibodies against hyper-acetylated histone H4. Hyper-acetylated histone H4 distribution peaks were compared in treated vs untreated HL-60 and NB4 cells. Results demonstrated that in treated HL-60 cells, the majority of peaks were distributed within the regions of proximal promoters, whereas in treated NB4 cells, hyper-acetylated histone H4 peaks were mainly localized in gene body regions. Further ChIP-seq data analysis revealed the changes in histone H4 hyper-acetylation in promoter/gene body regions of genes involved in cancer signaling pathways. In addition, quantitative gene expression analysis proved changes in various cellular pathways important for carcinogenesis. Epigenetic treatment down-regulated the expression of MTOR, LAMTOR1, WNT2B, VEGFR3, FGF2, FGFR1, TGFA, TGFB1, TGFBR1, PDGFA, PDGFRA and PDGFRB genes in NB4, HL-60 and APL patients' cells. In addition, effect of epigenetic treatment on protein expression of aforementioned signaling pathways was confirmed with mass spectrometry analysis. Taken together, these results provide supplementary insights into molecular changes that occur during epigenetic therapy application in in vitro promyelocytic leukemia cell model.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| | - Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| |
Collapse
|
9
|
Lu P, Gu Y, Li L, Wang F, Yang X, Yang Y. Belinostat suppresses cell proliferation by inactivating Wnt/β-catenin pathway and promotes apoptosis through regulating PKC pathway in breast cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3955-3960. [PMID: 31571495 DOI: 10.1080/21691401.2019.1671855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
Belinostat is a histone deacetylase inhibitor drug capable of regulating cell growth in diverse cancers. Nonetheless, little information clarified the role of Belinostat in breast cancer. Hence, the functions of Belinostat in breast cancer cells survival was disclosed in this study. Belinostat at 50 and 100 μM were applied to manage MCF-7 cells, cell viability, Ki67 positive cells, cell cycle and apoptosis were monitored via MTT, immunohistochemistry and flow cytometry. Furthermore, the apoptosis-related factors, Wnt/β-catenin pathway and PKC pathway were tested through western blot and qRT-PCR. Lastly, in vivo effect of Belinostat was determined by a murine model. The results showed that Belinostat dampened cell viability, decreased the proportion of Ki67 positive cells and arrested cells at G0/G1 phase. The decreases of Wnt/β-catenin, CCND2 and Myc were observed in MCF-7 cells after Belinostat stimulation. Additionally, Belinostat induced cell apoptosis, meanwhile dampened Bcl-2 and raised Bax and Cleaved caspase 3 in a dose and time-dependent manner. Additionally, Belinostat activated PKC pathway by upgrading PKCδ and P53 expressions. Furthermore, Belinostat restrained tumour weight and volume in vivo. In summary, this study depicted that Belinostat prohibited proliferation and evoked apoptosis via mediating Wnt/β-catenin and PKC pathways in MCF-7 cells.
Collapse
Affiliation(s)
- Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xue Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
10
|
San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111794. [PMID: 31739588 PMCID: PMC6896008 DOI: 10.3390/cancers11111794] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation, differentiation arrest, and accumulation of immature myeloid progenitors. Although clinical advances in AML have been made, especially in young patients, long-term disease-free survival remains poor, making this disease an unmet therapeutic challenge. Epigenetic alterations and mutations in epigenetic regulators contribute to the pathogenesis of AML, supporting the rationale for the use of epigenetic drugs in patients with AML. While hypomethylating agents have already been approved in AML, the use of other epigenetic inhibitors, such as histone deacetylases (HDAC) inhibitors (HDACi), is under clinical development. HDACi such as Panobinostat, Vorinostat, and Tricostatin A have been shown to promote cell death, autophagy, apoptosis, or growth arrest in preclinical AML models, yet these inhibitors do not seem to be effective as monotherapies, but rather in combination with other drugs. In this review, we discuss the rationale for the use of different HDACi in patients with AML, the results of preclinical studies, and the results obtained in clinical trials. Although so far the results with HDACi in clinical trials in AML have been modest, there are some encouraging data from treatment with the HDACi Pracinostat in combination with DNA demethylating agents.
Collapse
Affiliation(s)
- Edurne San José-Enériz
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Naroa Gimenez-Camino
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| |
Collapse
|
11
|
Hamam HJ, Palaniyar N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019; 9:E369. [PMID: 31416265 PMCID: PMC6723044 DOI: 10.3390/biom9080369] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
: Neutrophils undergo a unique form of cell death that generates neutrophil extracellular traps (NETs) that may help to neutralize invading pathogens and restore homeostasis. However, uncontrolled NET formation (NETosis) can result in numerous diseases that adversely affect health. Recent studies further elucidate the mechanistic details of the different forms of NETosis and their common end structure, as NETs were constantly found to contain DNA, modified histones and cytotoxic enzymes. In fact, emerging evidence reveal that the post translational modifications (PTMs) of histones in neutrophils have a critical role in regulating neutrophil death. Histone citrullination is shown to promote a rapid form of NET formation independent of NADPH oxidase (NOX), which relies on calcium influx. Interestingly, few studies suggest an association between histone citrullination and other types of PTMs to control cell survival and death, such as histone methylation. Even more exciting is the finding that histone acetylation has a biphasic effect upon NETosis, where histone deacetylase (HDAC) inhibitors promote baseline, NOX-dependent and -independent NETosis. However, increasing levels of histone acetylation suppresses NETosis, and to switch neutrophil death to apoptosis. Interestingly, in the presence of NETosis-promoting stimuli, high levels of HDACis limit both NETosis and apoptosis, and promote neutrophil survival. Recent studies also reveal the importance of the PTMs of neutrophils in influencing numerous pathologies. Histone modifications in NETs can act as a double-edged sword, as they are capable of altering multiple types of neutrophil death, and influencing numerous NET-mediated diseases, such as acute lung injury (ALI), thrombosis, sepsis, systemic lupus erythematosus, and cancer progression. A clear understanding of the role of different PTMs in neutrophils would be important for an understanding of the molecular mechanisms of NETosis, and to appropriately treat NETs-mediated diseases.
Collapse
Affiliation(s)
- Hussein J Hamam
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Abbaszade Dibavar M, Soleimani M, Atashi A, Rassaei N, Amiri S. The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S138-S146. [DOI: 10.1080/21691401.2018.1489821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Masoud Soleimani
- Department of Hemetology, Faculty of Medical Sciences, Hematology and cell therapy, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Neda Rassaei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
13
|
HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 2018; 475:3997-4010. [PMID: 30322885 DOI: 10.1042/bcj20180465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.
Collapse
|
14
|
Li ZY, Yang L, Liu XJ, Wang XZ, Pan YX, Luo JM. The Long Noncoding RNA MEG3 and its Target miR-147 Regulate JAK/STAT Pathway in Advanced Chronic Myeloid Leukemia. EBioMedicine 2018; 34:61-75. [PMID: 30072211 PMCID: PMC6117736 DOI: 10.1016/j.ebiom.2018.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Background Long non-coding (lnc) RNAs plays an important role in chronic myeloid leukemia (CML). In this study, we aimed to uncover the mechanism of the lncRNA maternally expressed 3 (MEG3) and its target microRNA-147 (miR-147) in CML. Methods Sixty CML patients and 10 healthy donors were included in the study. The methylation of MEG3 and miR-147 promoter was determined by methylation-specific PCR. The relationship of MEG3 and miR-147 was explored by luciferase assay. The interactions of proteins were studied by RNA pull-down assay, RNA immunoprecipitation and co-immunoprecipitation. Findings Patients in accelerated phase CML (CML-AP) and blast phase CML (CML-BP) showed lower expressions of MEG3 and miR-147 and higher expressions of DNMT1, DNMT3B, MBD2, MECP2 and HDAC1 compared to the controls. These patients also showed a higher degree of methylation of MEG3 and miR-147 while there was a reduction after chidamide treatment. Furthermore, the overexpression of MEG3 and miR-147 inhibited cell proliferation both in vivo and in vitro, promoted apoptosis and decreased the expressions of DNMT1, DNMT3A, DNMT3B, MBD2, HDAC1 and MECP2. We also found MEG3 interacted with DNMT1, JAK2, STAT3, HDAC1, and TYK2, and JAK2 was bound to STAT3, STAT5 and MYC. More interestingly, JAK2 was bound to TYK2 by the bridge of MEG3. Interpretation LncRNA MEG3 and its target miR-147 may serve as a novel therapeutic target for CML blast crisis, and chidamide might have a potential clinical application in treating CML blast crisis.
Collapse
Affiliation(s)
- Zi-Ye Li
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xing-Zhe Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yu-Xia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
15
|
Borutinskaitė V, Virkšaitė A, Gudelytė G, Navakauskienė R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leuk Lymphoma 2017. [PMID: 28641467 DOI: 10.1080/10428194.2017.1339881] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Green tea (Camellia sinensis) catechin epigallocatechin-3-gallate (EGCG) has been shown to possess diverse anti-cancerous properties. We demonstrated EGCG ability to inhibit acute promyelocytic leukemia (APL) cell proliferation and cause apoptosis. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed elevated expression of genes associated with cell cycle arrest and differentiation (p27, PCAF, C/EBPα, and C/EBPɛ). Furthermore, EGCG caused anti-cancerous epigenetic changes: downregulation of epigenetic modifiers DNMT1, HDAC1, HDAC2, and G9a was observed by RT-qPCR analysis. Reduced amount of H3K9me2 after treatment with EGCG confirmed G9a downregulation. Polycomb repressive complex 2 (PRC2) core components were also shown to be downregulated in gene and protein level. Chromatin immunoprecipitation (ChIP) analysis revealed that EGCG treatment enhanced hyperacetylated H4 and acetylated H3K14 histones binding to the promoter regions of p27, PCAF, C/EBPα, and C/EBPɛ and reduced binding effect to PRC2 core component genes EZH2, SUZ12, and EED. Our results indicate that EGCG, as cell proliferation inhibitor and epigenetic modifier, might be useful for APL treatment.
Collapse
Affiliation(s)
- Veronika Borutinskaitė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Aida Virkšaitė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Giedrė Gudelytė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Rūta Navakauskienė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| |
Collapse
|
16
|
Valiulienė G, Stirblytė I, Jasnauskaitė M, Borutinskaitė V, Navakauskienė R. Anti-leukemic effects of HDACi Belinostat and HMTi 3-Deazaneplanocin A on human acute promyelocytic leukemia cells. Eur J Pharmacol 2017; 799:143-153. [PMID: 28192098 DOI: 10.1016/j.ejphar.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/27/2023]
Abstract
Development of acute myeloid leukemia is usually sustained by deregulated epigenome. Alterations in DNA methylation and histone modifications are common manifestations of the disease. Acute promyelocytic leukemia (APL) is not an exception. Therefore, drugs that target epigenetic processes suggest an appealing strategy for APL treatment. In this study we tested the anti-leukemic activity of histone deacetylase inhibitor (HDACi) Belinostat (PXD101, (2E)-N-Hydroxy-3-[3-(phenylsulfamoyl)phenyl]prop-2-enamide), and histone methyltransferase inhibitor (HMTi) 3-Deazaneplanocin A (DZNep, 5R-(4-amino-1H-imidazo[4,5-c]pyridin-1-yl)-3-(hydroxymethyl)-3-cyclopentene-1S,2R-diol) combined with retinoic acid (RA) in APL cells NB4 and HL-60. We demonstrated that APL cell treatment with combinations of differentiation inductor RA, HDACi Belinostat and HMTi DZNep caused a depletion of leukemia cell growth and viability, initiated apoptosis and exaggerated RA induced granulocytic differentiation. Also an increased expression of transcription factors C/EBPε and PPARγ was demonstrated, while no significant reduction in C/EBPα gene level was detected. Furthermore, combined treatment depleted gene expression levels of EZH2 and SUZ12, especially in HL-60 cells, and diminished protein levels of Polycomb Repressive Complex 2 (PRC2) components EZH2, SUZ12 and EED. In addition, our study has shown that Belinostat and DZNep together with RA caused a depletion in HDAC1 and HDAC2 protein levels, HDAC2 gene expression and increased hyperacetylation of histone H4 in both leukemia cell lines. Using ChIP method we also demonstrated the increased association of hyperacetylated histone H4 with the C/EBPα and C/EBPε promoter regions in HL-60 cells. Summarizing, these findings indicate that combined treatment with RA, Belinostat and 3-Deazaneplanocin A is an effective epigenetic inducer for leukemia cell differentiation.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| | - Ieva Stirblytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| | - Monika Jasnauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
17
|
Todorović TR, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić S, Jovanović K, Radulović S, Anđelković K, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. MEDCHEMCOMM 2016; 8:103-111. [PMID: 30108695 DOI: 10.1039/c6md00501b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
Collapse
Affiliation(s)
- Tamara R Todorović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Jelena Vukašinović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Gustavo Portalone
- Department of Chemistry , Sapienza University of Rome , P.le Aldo Moro 5 , 00185 Rome , Italy
| | - Sherif Suleiman
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Snezana Bjelogrlić
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Anđelković
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Analisse Cassar
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nenad R Filipović
- Faculty of Agriculture , University of Belgrade , Nemanjina 6 , 11081 Belgrade , Serbia .
| | | |
Collapse
|
18
|
Bailey H, McPherson JP, Bailey EB, Werner TL, Gupta S, Batten J, Reddy G, Bhat G, Sharma S, Agarwal N. A phase I study to determine the pharmacokinetics and urinary excretion of belinostat and metabolites in patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 78:1059-1071. [PMID: 27744565 DOI: 10.1007/s00280-016-3167-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Belinostat is an inhibitor of histone deacetylase enzymes, resulting in DNA repair inhibition and apoptosis. Present data are lacking to provide dosing recommendations in renal insufficiency. The purpose of this trial was to assess the pharmacokinetics (PK) of belinostat and belinostat metabolites in plasma and urine. METHODS This was a phase I, single-center, open-label, two-part study. In Part I, patients received single-agent belinostat 1000 mg/m2. Blood and urine samples were collected at pre-specified time points to determine PK of belinostat and metabolites and their elimination in urine. In Part II, patients were permitted to continue belinostat in 21-day cycles on Days 1 through 5 until disease progression, unacceptable toxicity, or according to patient preference. RESULTS A total of nine patients with advanced solid tumors were treated. Median t max for belinostat was observed 10 min after the start of infusion. Concentrations of belinostat rapidly declined with a t 1/2 of 2.9 h. The mean fraction of belinostat excreted unchanged in urine was 0.926 %. The metabolites belinostat glucuronide and 3-ASBA represented the largest fractions of belinostat dose excreted in urine (30.5 and 4.61 %, respectively), while renal excretion appeared to be a minor route of elimination for the parent belinostat (<1 %). The most common adverse events were nausea, fatigue, and diarrhea. One Grade 3 adverse event (constipation) was thought to be treatment related. CONCLUSIONS Urinary elimination of parent belinostat was minimal, although a combined 36.7 % of belinostat metabolites were excreted in urine. Since these metabolites are primarily inactive, belinostat may not require dosage adjustment in renal dysfunction.
Collapse
Affiliation(s)
- Hanna Bailey
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Jordan P McPherson
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Erin B Bailey
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Theresa L Werner
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Sumati Gupta
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Julia Batten
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Guru Reddy
- Spectrum Pharmaceuticals, Irvine, CA, USA
| | | | - Sunil Sharma
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope, Ste 2123, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
19
|
Agarwal N, McPherson JP, Bailey H, Gupta S, Werner TL, Reddy G, Bhat G, Bailey EB, Sharma S. A phase I clinical trial of the effect of belinostat on the pharmacokinetics and pharmacodynamics of warfarin. Cancer Chemother Pharmacol 2015; 77:299-308. [PMID: 26719074 DOI: 10.1007/s00280-015-2934-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE Belinostat is a potent small molecule inhibitor that exerts its antitumor effect through inhibition of histone deacetylase. The purpose of this study was to evaluate the pharmacokinetics and pharmacodynamics of warfarin (as a reference drug metabolized by CYP2C9) in the presence and absence of belinostat. METHODS We conducted a phase I, single-center, open-label, drug-drug interaction study between belinostat and warfarin. In part I, patients were given warfarin 5 mg orally (day-14 and 3) and belinostat 1000 mg/m(2) (days 1 through 5). Patients receiving benefit continued belinostat on days 1 through 5 every 21 days until disease progression, unacceptable toxicity, or per patient preference. RESULTS A total of 18 patients were treated. With belinostat, the least-squared means for maximum concentration (C max), area under the curve0-∞, and area under the curve0-t of R-warfarin were slightly increased. However, for the more potent S-warfarin isomer, the same parameters were primarily contained within the pre-specified equivalence limits of 0.80 and 1.25, indicating there was no statistically significant interaction between S-warfarin and belinostat. The most common adverse events were nausea, vomiting, and fatigue. Three grade 3 adverse events (diarrhea 5.6 %, nausea 5.6 %, and vomiting 5.6 %) were thought to be treatment related. Progression-free survival ranged from 0.2 to 13.8 months in all patients. CONCLUSIONS Belinostat did not significantly affect the pharmacokinetics and pharmacodynamics of warfarin, indicating no clinically relevant effect on the enzymatic activity of CYP2C9.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA.
| | - Jordan P McPherson
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| | - Hanna Bailey
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| | - Sumati Gupta
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| | - Theresa L Werner
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| | - Guru Reddy
- Spectrum Pharmaceuticals, Irvine, CA, USA
| | | | - Erin B Bailey
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| | - Sunil Sharma
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, 84112, UT, USA
| |
Collapse
|