1
|
Rende U, Guller A, Goldys EM, Pollock C, Saad S. Diagnostic and prognostic biomarkers for tubulointerstitial fibrosis. J Physiol 2023; 601:2801-2826. [PMID: 37227074 DOI: 10.1113/jp284289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Renal fibrosis is the final common pathophysiological pathway in chronic kidney disease (CKD) regardless of the underlying cause of kidney injury. Tubulointerstitial fibrosis (TIF) is considered to be the key pathological predictor of CKD progression. Currently, the gold-standard tool to identify TIF is kidney biopsy, an invasive method that carries risks. Non-invasive diagnostics rely on an estimation of glomerular filtration rate and albuminuria to assess kidney function, but these fail to diagnose early CKD accurately or to predict progressive decline in kidney function. In this review, we summarize the current and emerging molecular biomarkers that have been studied in various clinical settings and in animal models of kidney disease and that are correlated with the degree of TIF. We examine the potential of these biomarkers to diagnose TIF non-invasively and to predict disease progression. We also examine the potential of new technologies and non-invasive diagnostic approaches in assessing TIF. Limitations of current and potential biomarkers are discussed and knowledge gaps identified.
Collapse
Affiliation(s)
- Umut Rende
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, NSW, Australia
| | - Ewa M Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
2
|
Xing Z, Gong K, Hu N, Chen Y. The Reduction of Uromodulin, Complement Factor H, and Their Interaction Is Associated with Acute Kidney Injury to Chronic Kidney Disease Transition in a Four-Time Cisplatin-Injected Rat Model. Int J Mol Sci 2023; 24:ijms24076636. [PMID: 37047611 PMCID: PMC10095257 DOI: 10.3390/ijms24076636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Uromodulin is recognized as a protective factor during AKI-to-CKD progression, but the mechanism remains unclear. We previously reported that uromodulin interacts with complement factor H (CFH) in vitro, and currently aimed to study the expression and interaction evolution of uromodulin and CFH during AKI-to-CKD transition. We successfully established a rat model of AKI-to-CKD transition induced by a four-time cisplatin treatment. The blood levels of BUN, SCR, KIM-1 and NGAL increased significantly during the acute injury phase and exhibited an uptrend in chronic progression. PAS staining showed the nephrotoxic effects of four-time cisplatin injection on renal tubules, and Sirius red highlighted the increasing collagen fiber. Protein and mRNA levels of uromodulin decreased while urine levels increased in acute renal injury on chronic background. An extremely diminished level of uromodulin correlated with severe renal fibrosis. RNA sequencing revealed an upregulation of the alternative pathway in the acute stage. Renal CFH gene expression showed an upward tendency, while blood CFH localized less, decreasing the abundance of CFH in kidney and following sustained C3 deposition. A co-IP assay detected the linkage between uromodulin and CFH. In the model of AKI-to-CKD transition, the levels of uromodulin and CFH decreased, which correlated with kidney dysfunction and fibrosis. The interaction between uromodulin and CFH might participate in AKI-to-CKD transition.
Collapse
Affiliation(s)
- Zheyu Xing
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Kunjing Gong
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Nan Hu
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Yuqing Chen
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| |
Collapse
|
3
|
Ma Z, Mao C, Jia Y, Yu F, Xu P, Tan Y, Zou QH, Zhou XJ, Kong W, Fu Y. ADAMTS7-Mediated Complement Factor H Degradation Potentiates Complement Activation to Contributing to Renal Injuries. J Am Soc Nephrol 2023; 34:291-308. [PMID: 36735376 PMCID: PMC10103097 DOI: 10.1681/asn.0000000000000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Urbanellis P, McEvoy CM, Škrtić M, Kaths JM, Kollmann D, Linares I, Ganesh S, Oquendo F, Sharma M, Mazilescu L, Goto T, Noguchi Y, John R, Mucsi I, Ghanekar A, Bagli D, Konvalinka A, Selzner M, Robinson LA. Transcriptome Analysis of Kidney Grafts Subjected to Normothermic Ex Vivo Perfusion Demonstrates an Enrichment of Mitochondrial Metabolism Genes. Transplant Direct 2021; 7:e719. [PMID: 34258386 PMCID: PMC8270593 DOI: 10.1097/txd.0000000000001157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) has demonstrated superior outcomes for donation-after-cardiovascular death grafts compared with static cold storage (SCS). To determine the mechanisms responsible for this, we performed an unbiased genome-wide microarray analysis. METHODS Kidneys from 30-kg Yorkshire pigs were subjected to 30 min of warm ischemia followed by 8 h of NEVKP or SCS, or no storage, before autotransplantation. mRNA expression was analyzed on renal biopsies on postoperative day 3. Gene set enrichment analysis was performed using hallmark gene sets, Gene Ontology, and pathway analysis. RESULTS The gene expression profile of NEVKP-stored grafts closely resembled no storage kidneys. Gene set enrichment analysis demonstrated enrichment of fatty acid metabolism and oxidative phosphorylation following NEVKP, whereas SCS-enriched gene sets were related to mitosis, cell cycle checkpoint, and reactive oxygen species (q < 0.05). Pathway analysis demonstrated enrichment of lipid oxidation/metabolism, the Krebs cycle, and pyruvate metabolism in NEVKP compared with SCS (q < 0.05). Comparison of our findings with external data sets of renal ischemia-reperfusion injury revealed that SCS-stored grafts demonstrated similar gene expression profiles to ischemia-reperfusion injury, whereas the profile of NEVKP-stored grafts resembled recovered kidneys. CONCLUSIONS Increased transcripts of key mitochondrial metabolic pathways following NEVKP storage may account for improved donation-after-cardiovascular death graft function, compared with SCS, which promoted expression of genes typically perturbed during IRI.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Caitriona M. McEvoy
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Marko Škrtić
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - J. Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ivan Linares
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Istvan Mucsi
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Darius Bagli
- Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Lisa A. Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
5
|
Bai L, Xie Q, Xia M, Gong K, Wang N, Chen Y, Zhao M. The importance of sialic acid, pH and ion concentration on the interaction of uromodulin and complement factor H. J Cell Mol Med 2021; 25:4316-4325. [PMID: 33788378 PMCID: PMC8093974 DOI: 10.1111/jcmm.16492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Uromodulin (UMOD) can bind complement factor H (cFH) and inhibit the activation of complement alternative pathway (AP) by enhancing the cofactor activity of cFH on degeneration of C3b. UMOD, an N-glycans-rich glycoprotein, is expressed in thick ascending limb of Henle's loop where the epithelia need to adapt to gradient change of pH and ion concentration. ELISA-based cofactor activity of cFH and erythrocytes haemolytic assay was used to measure the impact of native and de-glycosylated UMOD on the functions of cFH. The binding assay was performed under different pH and ion concentrations, using ELISA. The levels of sialic acid on UMOD, from healthy controls and patients with chronic kidney disease (CKD), were also detected by lectin-ELISA. It was shown that removal of glycans decreased the binding between UMOD and cFH and abolished the ability of enhancing C3b degradation. In acidic condition, the binding became stronger, but it reduced as sodium concentration increased. A significant decrease of α-2,3 sialic acids on UMOD was observed in CKD patients compared with that of healthy individuals. The sialic acids on UMOD, local pH and sodium concentration could impact the binding capacity between UMOD and cFH and thus regulate the activation of complement AP.
Collapse
Affiliation(s)
- Lufeng Bai
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Qiuyu Xie
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Min Xia
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Kunjing Gong
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yuqing Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
6
|
Yu L, Pei F, Sun Q, Shen F, Yang X, Hu Z, Liu M. Uromodulin aggravates renal tubulointerstitial injury through activation of the complement pathway in rats. J Cell Physiol 2021; 236:5012-5021. [PMID: 33400289 DOI: 10.1002/jcp.30208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023]
Abstract
Uromodulin (Umod) is the most abundant constituent of urine in humans and exclusively found in the kidney tubular epithelium. However, the specific role of Umod in renal tubulointerstitial injury is yet to be understood. The present study was conducted with aim of investigating the potential therapeutic mechanism of Umod in the regulation of renal tubulointerstitial injury. Protein expression of Umod in renal tubular epithelial cells was measured with the conduction of Western blot analysis. Enzyme-linked immunosorbent assay and immunofluorescence assay were performed to detect the complement activation products and the activation products of surface deposition. The expression of C1q, C2, C4, B factor, C3, C5, H factor, CD46, CD55, C3aR, and C5aR were determined with the use of reverse-transcription quantitative polymerase chain reaction and Western blot analyses. Subsequently, the unilateral ureteral obstruction (UUO) rat model was established. Renal tubulointerstitial injury was assessed with the application of hematoxylin-eosin staining and Masson staining in rats. UUO rats and normal rats were injected with si-NC or si-Umod and complement inhibitor. UUO rats were observed to have serious impairment of kidney tubule, renal tubular dilation, and epithelial atrophy, with downregulated Umod and activated complement pathway. Silencing of Umod resulted in the activation of complement system while promoting interstitial fibrosis in renal tubules. Moreover, addition of complement inhibitor significantly alleviated the renal tubule injury and fibrosis. Collectively, our study suggests that silencing of Umod mediates the complement pathway, exacerbating renal tubulointerstitial injury in rats, which provides insight into the development of novel therapeutic agents for renal tubulointerstitial injury.
Collapse
Affiliation(s)
- Li Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fei Pei
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiaoling Sun
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Shen
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Maojing Liu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Gong K, Xia M, Wang Y, Bai L, Ying W, Zhu F, Chen Y. Importance of glycosylation in the interaction of Tamm-Horsfall protein with collectin-11 and acute kidney injury. J Cell Mol Med 2020; 24:3572-3581. [PMID: 32045104 PMCID: PMC7131921 DOI: 10.1111/jcmm.15046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10-7 mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.
Collapse
Affiliation(s)
- Kunjing Gong
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Min Xia
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Yaqin Wang
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Lufeng Bai
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Wantao Ying
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for protein science (Beijing)Beijing Institute of lifeomicsBeijingChina
| | - Fengxue Zhu
- Department of Critical Care MedicinePeking University People's HospitalBeijingChina
| | - Yuqing Chen
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| |
Collapse
|
8
|
Maydan O, McDade PG, Liu Y, Wu XR, Matsell DG, Eddy AA. Uromodulin deficiency alters tubular injury and interstitial inflammation but not fibrosis in experimental obstructive nephropathy. Physiol Rep 2019; 6:e13654. [PMID: 29595914 PMCID: PMC5875544 DOI: 10.14814/phy2.13654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human GWAS and Mendelian genetic studies have linked polymorphic variants and mutations in the human uromodulin gene (UMOD) with chronic kidney disease. The primary function of this kidney‐specific and secreted protein remains elusive. This study investigated whether UMOD deficiency modified responses to unilateral ureteral obstruction (UUO)‐induced kidney injury. Kidneys harvested from groups of wild‐type (UMOD+/+) and knockout (UMOD−/−) male mice (n = 7–10 each) were studied on days 7, 14, and 21. Compared to sham kidneys, UMOD protein levels increased 9–13x after UUO and were associated with increased urinary UMOD levels. Kidney KIM‐1 protein levels were higher in the UMOD−/− groups at all time‐points (4–14x). The UMOD−/− groups also had higher KIM‐1 kidney‐to‐urine relative ratios (5–35x). In vitro studies using KIM‐1 expressing 769‐P cells showed lower KIM‐1 levels in the presence of UMOD protein. Levels of proapoptotic genes and the epithelial cell apoptotic protein marker M30 were significantly lower in the UMOD−/− groups. Both M30 and KIM‐1 colocalized with intraluminal UMOD protein deposits. Interstitial inflammation was less intense in the UMOD−/− groups. Renal fibrosis severity (kidney collagen mRNA and protein) was similar in both genotypic groups on days 7, 14, and 21. Our findings suggest a role for UMOD‐dependent inhibition of KIM‐1 expression and its apoptotic cell scavenging responses during chronic obstruction‐associated tubular injury.
Collapse
Affiliation(s)
- Olena Maydan
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Paul G McDade
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yan Liu
- Department of Urology, New York University, New York, New York
| | - Xue-Ru Wu
- Department of Urology, New York University, New York, New York
| | - Douglas G Matsell
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Allison A Eddy
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Rhodes DCJ. Human Tamm-Horsfall protein, a renal specific protein, serves as a cofactor in complement 3b degradation. PLoS One 2017; 12:e0181857. [PMID: 28742158 PMCID: PMC5524369 DOI: 10.1371/journal.pone.0181857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/07/2017] [Indexed: 11/18/2022] Open
Abstract
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement.
Collapse
Affiliation(s)
- Diana C. J. Rhodes
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, Washington, United States of America
- * E-mail:
| |
Collapse
|