1
|
Jin W, Cui F, Li J, Li J, Li K, Cheng Y, Cheng F, Cao J, Zhao W, Zhao L, Li Y, Yang Y, Yun S, Feng C. Multi-omics reveals the mechanism of Sparassis latifolia polysaccharides to relieve cyclophosphamide-induced immune injury in liver of mice. Int J Biol Macromol 2024:139197. [PMID: 39733888 DOI: 10.1016/j.ijbiomac.2024.139197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
The present study aimed to investigate the impact of Sparassis latifolia polysaccharides (SLPs) on hepatic immune function in cyclophosphamide (CTX)-induced immunocompromised mice. Our findings demonstrated that SLPs effectively suppressed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammatory factors, and acute phase proteins, while improving the hepatic oxidative stress state. Additionally, SLPs exerted inhibitory effects on inflammatory cell infiltration within hepatic tissue. Transcriptomic results revealed that 246 differentially-expressed genes (DEGs) were identified. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed that the more DEGs in SLPs group were mainly related to immune signal transduction and metabolism pathways. And more DEGs were mainly related to MAPK signaling pathway and JAK/STAT signaling pathway. Metabolome analysis demonstrated that SLPs significantly modulated specific metabolites in the liver, including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocyclic compounds, phenylpropanoids and polyketones, organic oxygenates, and benzene. The comprehensive analysis of transcriptome and metabonomics revealed the activation of immune-related signal pathways in mice liver stimulated by CTX. Notably, the involvement of diverse genes and metabolites was observed in the metabolism of arachidonic acid (AA) and JAK/STAT pathway. Correlation analysis also showed that there was a certain correlation between metabolites and differential genes. The present findings offer novel insights into the regulatory mechanism of liver immune injury by SLPs, which exhibits potential application value in improving immunocompromised populations.
Collapse
Affiliation(s)
- Wen Jin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Fangming Cui
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jiaxin Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jiahui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kexin Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Li Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yong Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Panda PK, Ramachandran A, Panda P, Sharawat IK. Safety and Efficacy of Vinpocetine as a Neuroprotective Agent in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:314-325. [PMID: 35488169 PMCID: PMC9053840 DOI: 10.1007/s12028-022-01499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 10/26/2022]
Abstract
BACKGROUND Vinpocetine as a neuroprotective agent is effective in acute ischemic stroke in some randomized controlled trials (RCTs). Since the last systematic review has been published in 2008, which didn't find conclusive evidence favoring its use, two more RCTs have also been completed. METHODS Relevant electronic databases were searched with a suitable combination of Medical Subject Headings terms to detect publications describing RCTs exploring the safety and efficacy of vinpocetine in patients with acute ischemic stroke. The risk of bias was determined by using the Cochrane Collaboration's tool for assessing the risk of bias in RCTs after full-text review and relevant data extraction. Higgins and Thompson's I2 method was used to assess heterogeneity in studies. The presence of publication bias was assessed by Egger's test. We used a random effect model when I2 was more than 50% and a fixed-effect model for other parameters. RESULTS Four placebo-controlled RCTs enrolling a total of 601 and 236 patients in vinpocetine and placebo groups, respectively, were included. The number of patients with death or significant disability was lower in the vinpocetine group than that in the placebo group at both 1 and 3 months (relative risk 0.80, 95% confidence interval [CI] 0.65-0.99 and relative risk 0.67, CI 0.48-0.92, p = 0.04 and 0.02, respectively). The degree of disability in participants at 1 month and 3 months was also lower in vinpocetine group than that in the placebo group (standardized mean difference (SMD) 0.49, 95% CI 0.03-0.95 and SMD 1.22, CI 0.23-2.24, p = 0.001 and 0.04, respectively). Change in mini-mental state examination score compared with baseline at trial enrolment was also better in the vinpocetine group than in the placebo group (pooled weighted mean difference 0.92, 95% CI 0.02-1.82, p = 0.04). CONCLUSIONS Vinpocetine has some promising efficacy in patients with ischemic stroke when used in the acute stage in reducing the disability, but presently there is not enough evidence to suggest that it also reduces case fatality. More double-blind, placebo-controlled RCTs of adequate sample size are needed before making recommendations for the routine administration of vinpocetine for all patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Prateek Kumar Panda
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Aparna Ramachandran
- Department of Neurology, IQRAA International Hospital & Research Centre, Kozhikode, Kerala, 673009, India
| | - Pragnya Panda
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
4
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
5
|
Tara A, Dominic JL, Patel JN, Garg I, Yeon J, Memon MS, Gergal Gopalkrishna Rao SR, Bugazia S, Dhandapani TPM, Kannan A, Kantamaneni K, Win M, Went TR, Yanamala VL, Mostafa JA. Mitochondrial Targeting Therapy Role in Liver Transplant Preservation Lines: Mechanism and Therapeutic Strategies. Cureus 2021; 13:e16599. [PMID: 34430181 PMCID: PMC8378417 DOI: 10.7759/cureus.16599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
The normal function of mitochondria in the hepatic parenchyma can be disrupted by ischemia/reperfusion (I/R) damage during liver transplantation. The pathology of these insults involves various cellular and molecular steps of events that have been extensively researched over decades but are yet to provide complete answers. This review discusses the brief mechanism of the pathophysiology following ischemia/reperfusion injury (IRI) and various targeting strategies that could result in improved graft function. The traditional treatment for end-stage liver disease i.e., liver transplantation, has been complicated by I/R damage. The poor graft function or primary non-function found after liver transplantation may be due to mitochondrial dysfunction following IRI. As a result, determining the sequence of incidents that cause human hepatic mitochondrial dysfunction is crucial; it might contribute to further improvements in the outcome of liver transplantation. Early discovery of novel prognostic factors involved in IRI could serve as a primary endpoint for predicting the outcome of liver grafts as well as promoting the early implementation of novel IRI-prevention strategies. In this review, recent developments in the study of mitochondrial dysfunction and I/R damage are discussed, specifically those concerning liver transplantation. Furthermore, we also explore different pharmacological therapeutic methods that may be used and their connections to mitochondrion-related processes and goals. Although significant progress has been made in our understanding of IRI and mitochondrial dysfunction, further research is needed to elucidate the cellular and molecular pathways underlying these processes to help identify biomarkers that can aid donor organ evaluation.
Collapse
Affiliation(s)
- Anjli Tara
- General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA.,General Surgery, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro, PAK
| | - Jerry Lorren Dominic
- General Surgery, Vinayaka Mission's Kirupananda Variyar Medical College, Salem, IND.,General Surgery, Stony Brook Southampton Hospital, New York, USA.,General Surgery and Orthopaedic Surgery, Cornerstone Regional Hospital, Edinburg, USA.,General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Jaimin N Patel
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Ishan Garg
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Jimin Yeon
- Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Marrium S Memon
- Research, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | | | - Seif Bugazia
- Faculty of Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Tamil Poonkuil Mozhi Dhandapani
- Internal Medicine/Family Medicine, California Institute of Behavioral Neuroscience & Pyshology (CIBNP), Fairfield, USA.,Internal Medicine, Medical City Plano, Plano, USA
| | - Amudhan Kannan
- Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND.,General Surgery Research, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Ketan Kantamaneni
- Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA.,Surgery, Dr.Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Gannavaram, IND
| | - Myat Win
- General Surgery, Nottingham University Hospitals NHS Trust, Nottingham, GBR.,General Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Terry R Went
- Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Vijaya Lakshmi Yanamala
- Surgery, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| |
Collapse
|
6
|
Chen L, Zhang WL, Xie DQ, Jia W. Sulforaphane alleviates hepatic ischemia-reperfusion injury through promoting the activation of Nrf-2/HO-1 signaling. Transpl Immunol 2021; 68:101439. [PMID: 34320386 DOI: 10.1016/j.trim.2021.101439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sulforaphane (SFN)displays both anti-oxidative stress and anti-inflammatory activity. Given that inflammation and oxidative stress play important roles in hepatic ischemia-reperfusion injury (HI/RI), we examined the protective effect and potential mechanism of SFN on HI/RI. METHODS The maneuver of Pringle's was used to establish the mode of HI/RI and 60 SD rats were randomly divided into Sham, HI/RI, SFN and ML385 Groups. The expression of aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), Nuclear factor-E2-related factor 2(Nrf-2), heme oxygenase 1(HO-1), nitric oxide (NO), Cyclooxygenase2 (COX-2), NADPH quinone oxidoreductase 1 (NQO1), malondialdehyde (MDA), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6) and monocyte chemotactic protein 1(MCP-1) were measured. Moreover, hepatic pathological morphology and the activity of glutathione (GSH), Catalase (CAT), superoxide dismutase (SOD) of the liver were also examined. RESULTS SFN treatment can significantly decrease the hepatic pathological injury and down-regulate the expression of ALT, AST, ALP, COX-2, TNF-a, IL-6, MCP-1, NO and MDA in HI/RI with increasing the expression of Nrf2, NQO1 and HO-1, and up-regulating the activity of GSH, CAT and SOD. Moreover, Nrf-2 inhibitor, ML385 can obliviously reverse the protective effect of SFN on HI/RI. CONCLUSION Sulforaphane can inhibit the inflammatory response and oxidative stress induced by HI/RI through promoting the activation of the Nrf-2 / HO-1 signal pathway.
Collapse
Affiliation(s)
- Li Chen
- Department of Gastroenterology, Anyue Country People's Hospital, Ziyang, China
| | - Wen-Li Zhang
- Department of Gastroenterology, Changning Hospital of Traditional Chinese Medicine, Yibin 644000, China
| | - De-Qiong Xie
- Division of Nephrology, The Second People's Hospital of Yibin, Yibin 644000, China.
| | - Wang Jia
- General Practice Center, and University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
7
|
Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 2021; 52:359-368. [PMID: 33754175 DOI: 10.1007/s00595-021-02265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer-term outcomes, late biliary complications, outcomes in specific high-risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver-directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.
Collapse
|
8
|
Cai H, Qi S, Yan Q, Ling J, Du J, Chen L. Global proteome profiling of human livers upon ischemia/reperfusion treatment. Clin Proteomics 2021; 18:3. [PMID: 33407080 PMCID: PMC7788958 DOI: 10.1186/s12014-020-09310-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury represents a major risk factor for liver transplantation and is related to graft dysfunction and acute/chronic rejection. However, a significant part of these processes remain poorly characterized. To reveal differences in the proteome during liver I/R injury, we collected human liver biopsy samples during hepatectomy before and after the Pringle maneuver and conducted a TMT-based proteomic analysis through quantitative high-throughput mass spectrometry. We used a fold-change threshold of 1.3 and a t-test p-value < 0.05 as the criteria to identify 5,257 total quantifiable proteins. The levels of 142 proteins were increased, while the levels of 103 proteins were decreased in response to hepatic I/R treatment. Bioinformatic analysis further revealed that these differentially expressed proteins are mainly involved in multiple biological functions and enzyme-regulated metabolic pathways. Most proteins whose expression was changed are related to the defense, immune and inflammatory responses as well as lipid and steroid metabolic processes. Based on this finding, we developed a panel for targeted proteomic analysis and used the parallel reaction monitoring (PRM) method, qPCR and western blotting experiments to validate alterations in the expression of some of the identified proteins. The upregulated proteins were found to be involved in immunity and inflammatory responses, and downregulated proteins were enriched in metabolic pathways. This study therefore may provide a research direction for the design of new therapeutic strategies for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shunli Qi
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jun Ling
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China. .,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China.
| |
Collapse
|
9
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
10
|
Bhogal RH, Mirza DF, Afford SC, Mergental H. Biomarkers of Liver Injury during Transplantation in an Era of Machine Perfusion. Int J Mol Sci 2020; 21:ijms21051578. [PMID: 32106626 PMCID: PMC7084877 DOI: 10.3390/ijms21051578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Liver ischaemia–reperfusion injury (IRI) is an intrinsic part of the transplantation process and damages the parenchymal cells of the liver including hepatocytes, endothelial cells and cholangiocytes. Many biomarkers of IRI have been described over the past two decades that have attempted to quantify the extent of IRI involving different hepatic cellular compartments, with the aim to allow clinicians to predict the suitability of donor livers for transplantation. The advent of machine perfusion has added an additional layer of complexity to this field and has forced researchers to re-evaluate the utility of IRI biomarkers in different machine preservation techniques. In this review, we summarise the current understanding of liver IRI biomarkers and discuss them in the context of machine perfusion.
Collapse
Affiliation(s)
- Ricky H. Bhogal
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- The Royal Marsden Hospital NHS Foundation Trust, London SW3 6JJ, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| | - Darius F. Mirza
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Simon C. Afford
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hynek Mergental
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| |
Collapse
|
11
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Melatonin preconditioning is an effective strategy for mesenchymal stem cell-based therapy for kidney disease. J Cell Mol Med 2019; 24:25-33. [PMID: 31747719 PMCID: PMC6933322 DOI: 10.1111/jcmm.14769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Based on multiple studies in animal models, mesenchymal stem cell (MSC)‐based therapy appears to be an innovative intervention approach with tremendous potential for the management of kidney disease. However, the clinical therapeutic effects of MSCs in either acute kidney injury (AKI) or chronic kidney disease (CKD) are still under debate. Hurdles originate from the harsh microenvironment in vivo that decreases the cell survival rate, paracrine activity and migratory capacity of MSCs after transplantation, which are believed to be the main reasons for their limited effects in clinical applications. Melatonin is traditionally regarded as a circadian rhythm‐regulated neurohormone but in recent years has been found to exhibit antioxidant and anti‐inflammatory properties. Because inflammation, oxidative stress, thermal injury, and hypoxia are abnormally activated in kidney disease, application of melatonin preconditioning to optimize the MSC response to the hostile in vivo microenvironment before transplantation is of great importance. In this review, we discuss current knowledge concerning the beneficial effects of melatonin preconditioning in MSC‐based therapy for kidney disease. By summarizing the available information and discussing the underlying mechanisms, we aim to improve the therapeutic effects of MSC‐based therapy for kidney disease and accelerate translation to clinical application.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Hua Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Martins RM, Teodoro JS, Furtado E, Rolo AP, Palmeira CM, Tralhão JG. Evaluation of bioenergetic and mitochondrial function in liver transplantation. Clin Mol Hepatol 2019; 25:190-198. [PMID: 30897898 PMCID: PMC6589847 DOI: 10.3350/cmh.2018.0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS We measured changes in mitochondrial function and bioenergetics that occur during ischemia/ reperfusion in fresh liver samples of patients undergoing liver transplantation. These variations correlated with markers of liver function and clinical outcome. Ischemia/reperfusion injury related to liver transplantation affects mitochondrial function and bioenergetics. Experimental studies were conducted to identify the role of bioenergetics and mitochondrial dysfunction. To the best of our knowledge, no investigation of these two factors' impacts on liver transplantation has been performed. METHODS This was a prospective study of 28 patients who underwent liver transplantation. We measured parameters of mitochondrial function and bioenergetics in biopsies performed during the procedure. RESULTS We observed a statistically significant reduction in mitochondrial membrane potential, an increase in lag phase, and decreases in mitochondrial respiration and adenosine triphosphate content (P<0.010). Higher postoperative aminotransferase peaks correlated with worse mitochondrial function; mitochondrial respiration correlated with arterial lactate (P<0.010). CONCLUSION There is a relationship between mitochondrial function and ischemia/reperfusion injury. The future use of these clinical markers as prognostic factors may allow early identification of post-transplant liver failure and may indicate the need to perform a new transplant.
Collapse
Affiliation(s)
| | - João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Adult and Paediatric Liver Transplantation Unit, Coimbra University and Hospital Centre, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- General Surgery Department, Coimbra University and Hospital Centre, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3831713. [PMID: 30805080 PMCID: PMC6360590 DOI: 10.1155/2019/3831713] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant. However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and the role and mechanism of H2S in liver health and disease are further discussed.
Collapse
|
14
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J Cell Mol Med 2018; 23:720-730. [PMID: 30484934 PMCID: PMC6349184 DOI: 10.1111/jcmm.14035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common, severe emergency case in clinics, with high incidence, significant mortality and increased costs. Despite development in the understanding of its pathophysiology, the therapeutic choices are still confined to dialysis and renal transplantation. Considering their antiapoptotic, immunomodulatory, antioxidative and pro‐angiogenic effects, mesenchymal stem cells (MSCs) may be a promising candidate for AKI management. Based on these findings, some clinical trials have been performed, but the results are contradictory (NCT00733876, NCT01602328). The low engraftment, poor survival rate, impaired paracrine ability and delayed administration of MSCs are the four main reasons for the limited clinical efficacy. Investigators have developed a series of preconditioning strategies to improve MSC survival rates and paracrine ability. In this review, by summarizing these encouraging studies, we intend to provide a comprehensive understanding of various preconditioning strategies on AKI therapy and improve the prognosis of AKI patients by regenerative medicine.
Collapse
Affiliation(s)
- Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Zhang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hua Jiang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jianghua Chen
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
15
|
Bhogal RH, Weston CJ, Velduis S, G D Leuvenink H, Reynolds GM, Davies S, Nyguet-Thin L, Alfaifi M, Shepard EL, Boteon Y, Wallace L, Oo YH, Adams DH, Mirza DF, Mergental H, Muirhead G, Stephenson BTF, Afford SC. The Reactive Oxygen Species-Mitophagy Signaling Pathway Regulates Liver Endothelial Cell Survival During Ischemia/Reperfusion Injury. Liver Transpl 2018; 24:1437-1452. [PMID: 30040176 DOI: 10.1002/lt.25313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Ischemia/reperfusion injury (IRI) is the main cause of complications following liver transplantation. Reactive oxygen species (ROS) were thought to be the main regulators of IRI. However, recent studies demonstrate that ROS activate the cytoprotective mechanism of autophagy promoting cell survival. Liver IRI initially damages the liver endothelial cells (LEC), but whether ROS-autophagy promotes cell survival in LEC during IRI is not known. Primary human LEC were isolated from human liver tissue and exposed to an in vitro model of IRI to assess the role of autophagy in LEC. The role of autophagy during liver IRI in vivo was assessed using a murine model of partial liver IRI. During IRI, ROS specifically activate autophagy-related protein (ATG) 7 promoting autophagic flux and the formation of LC3B-positive puncta around mitochondria in primary human LEC. Inhibition of ROS reduces autophagic flux in LEC during IRI inducing necrosis. In addition, small interfering RNA knockdown of ATG7 sensitized LEC to necrosis during IRI. In vivo murine livers in uninjured liver lobes demonstrate autophagy within LEC that is reduced following IRI with concomitant reduction in autophagic flux and increased cell death. In conclusion, these findings demonstrate that during liver IRI ROS-dependent autophagy promotes the survival of LEC, and therapeutic targeting of this signaling pathway may reduce liver IRI following transplantation.
Collapse
Affiliation(s)
- Ricky H Bhogal
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Christopher J Weston
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Susanne Velduis
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Gary M Reynolds
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Scott Davies
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Luu Nyguet-Thin
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Mohammed Alfaifi
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Emma L Shepard
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Yuri Boteon
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Lorraine Wallace
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Ye H Oo
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - David H Adams
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Darius F Mirza
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Hynek Mergental
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
- The Liver Unit, University Hospitals of Birmingham, New Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Gillian Muirhead
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Barnaby T F Stephenson
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| | - Simon C Afford
- Centre for Liver Research, School of Infection and Immunity, Institute for Biomedical Research, The Medical School, Birmingham, United Kingdom
| |
Collapse
|
16
|
Nakazato PCG, Victorino JP, Fina CF, Mendes KDS, Gomes MCJ, Evora PRB, D’Albuquerque LAC, Castro-e-Silva O. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy. Acta Cir Bras 2018; 33:723-735. [DOI: 10.1590/s0102-865020180080000008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
|
17
|
Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J Cell Mol Med 2018; 22:3408-3422. [PMID: 29602237 PMCID: PMC6010831 DOI: 10.1111/jcmm.13617] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the changes in hepatic oxidative phosphorylation (OXPHOS) complexes (COs) in patients and cows with non‐alcoholic steatohepatitis (NASH) and to investigate the mechanism that links mitochondrial dysfunction and hepatic insulin resistance induced by non‐esterified fatty acids (NEFAs). Patients and cows with NASH displayed high blood NEFAs, TNF‐α and IL‐6 concentrations, mitochondrial dysfunction and insulin resistance. The protein levels of peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), mitofusin‐2 (Mfn‐2) and OXPHOS complexes (human: COI and COIII; cow: COI‐IV) were significantly decreased in patients and cows with NASH. NEFA treatment significantly impaired mitochondrial function and, increased reactive oxygen species (ROS) production, and excessive ROS overactivated the JNK and p38MAPK pathways and induced insulin resistance in cow hepatocytes. PGC‐1α and Mfn‐2 overexpression significantly decreased the NEFA‐induced ROS production and TNF‐α and IL‐6 mRNA expressions, reversed the inhibitory effect of NEFAs on mitochondrial function and attenuated the overactivation of the ROS‐JNK/p38MAPK pathway, alleviated insulin resistance induced by NEFAs in cow hepatocytes and HepG2 cells. These findings indicate that NEFAs induce mitochondrial dysfunction and insulin resistance mediated by the ROS‐JNK/p38MAPK pathway. PGC‐1α or Mfn‐2 overexpression reversed the lipotoxicity of NEFAs on mitochondrial dysfunction and insulin resistance. Our study clarified the mechanism that links hepatic mitochondrial dysfunction and insulin resistance in NASH.
Collapse
Affiliation(s)
- Wenwen Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The first Hospital, Jilin University, Changchun, Jilin Province, China
| | - Min Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
18
|
Addition of Berberine to Preservation Solution in an Animal Model of Ex Vivo Liver Transplant Preserves Mitochondrial Function and Bioenergetics from the Damage Induced by Ischemia/Reperfusion. Int J Mol Sci 2018; 19:ijms19010284. [PMID: 29351246 PMCID: PMC5796230 DOI: 10.3390/ijms19010284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation is a therapeutic regimen to treat patients with non-malignant end-stage liver diseases and malignant tumors of hepatic origin. The ischemia/reperfusion (I/R) injury in liver transplantation is associated with disruption of mitochondrial function in the hepatic parenchyma. Several studies have been conducted in animal models to identify pharmacological therapeutic strategies to minimize the injury induced by the cold/warm I/R in liver transplantation. Most of these studies were conducted in unrealistic conditions without the potential to be translated to clinical usage. Berberine (BBR) is a pharmacological compound with a potential protective effect of the mitochondrial function in the context of I/R. For the future clinical application of these pharmacological strategies, it is essential that a close resemblance exists between the methodology used in the animals models and real life. In this study, we have demonstrated that the addition of BBR to the preservation solution in an I/R setting preserves mitochondrial function and bioenergetics, protecting the liver from the deleterious effects caused by I/R. As such, BBR has the potential to be used as a pharmacological therapeutic strategy.
Collapse
|
19
|
Martins RM, Teodoro JS, Furtado E, Rolo AP, Palmeira CM, Tralhão JG. Recent insights into mitochondrial targeting strategies in liver transplantation. Int J Med Sci 2018; 15:248-256. [PMID: 29483816 PMCID: PMC5820854 DOI: 10.7150/ijms.22891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury in liver transplantation can disrupt the normal activity of mitochondria in the hepatic parenchyma. This potential dysfunction of mitochondria after I/R injury could be responsible for the initial poor graft function or primary nonfunction observed after liver transplantation. Thus, determining the mechanisms that lead to human hepatic mitochondrial dysfunction might contribute to improving the outcome of liver transplantation. Furthermore, early identification of novel prognostic factors involved in I/R injury could serve as a key endpoint to predict the outcome of liver grafts and also to promote the early adoption of novel strategies that protect against I/R injury. Here, we briefly review recent advances in the study of mitochondrial dysfunction and I/R injury, particularly in relation to liver transplantation. Next, we highlight various pharmacological therapeutic strategies that could be applied, and discuss their relationship to relevant mitochondrion-related processes and targets. Lastly, we note that although considerable progress has been made in our understanding of I/R injury and mitochondrial dysfunction, further investigation is required to elucidate the cellular and molecular mechanisms underlying these processes, thereby identifying biomarkers that can help in evaluating donor organs.
Collapse
Affiliation(s)
- Rui Miguel Martins
- Department of Surgery, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Unidade de Transplantação Hepática de Crianças e Adultos, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- Department of Surgery A, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; and Center for Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|