1
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharm Res 2022; 45:558-571. [PMID: 35951164 DOI: 10.1007/s12272-022-01400-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.
Collapse
|
3
|
Zhang YZ, Ge SJ, Leng QZ, Ma JJ, Liu HC. Preliminary study of the toxicity and radioprotective effects of zymosan in vitro and in vivo. BMC Pharmacol Toxicol 2021; 22:16. [PMID: 33731220 PMCID: PMC7968253 DOI: 10.1186/s40360-021-00482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to confirm the cytotoxicity of zymosan in vitro and in vivo and determine the appropriate treatment time and the dose of zymosan. METHODS AHH-1 cells and HIECs were administered by 0, 20, 40, 80 or 160 μg/mL zymosan. The CCK-8 assay and flow cytometry were used to evaluate the cell viability and apoptosis 24 h, 48 h, and 72 h after administration. Furthermore, 12 h before irradiation, the cells were treated with 0, 5, 10, or 20 μg/mL zymosan and then irradiated with 4 Gy X-rays. Cell viability and apoptosis were measured by the CCK-8 assay and flow cytometry at 24 h. In addition, the protective effect of zymosan against radiation in vitro was compared to that of 20 μg/mL LPS. In vivo, weight, the spleen index, and the thymus index were measured to evaluate the toxicity of 0, 5, 10, 20, and 10 mg/kg zymosan. In addition, rats were treated with 0, 2, 4, 8, or 10 mg/kg zymosan and then irradiated with 7 Gy X-rays. The survival rate, organ index were evaluated. The protective effect of zymosan against radiation in vivo was compared to that of 10 mg/kg LPS a positive control. RESULTS The viability and apoptosis of cells treated with different doses and treatment times of zymosan were not different from those of control cells (p < 0.05). Furthermore, cell viability and apoptosis were clearly improved after zymosan preadministration (p < 0.05). The radioprotective effect of zymosan was dose-dependent. In addition, the viability of cells pretreated with zymosan was higher than that of cells pretreated with LPS, and the apoptosis rate of zymosan-treated cells was lower than that of cells pretreated with LPS (p < 0.05). In vivo, weight, the spleen index and the thymus index were significantly decreased by zymosan at a concentration of 20 mg/kg (p < 0.05). Further experiments showed that the concentration at which zymosan exerted radioprotective effects was 10 mg/kg. The survival curves in the irradiated rats were barely separated between the LPS treatment and zymosan treatment. CONCLUSION Zymosan administration before radiation exposure significantly increased cell viability and the survival rates of rats.
Collapse
Affiliation(s)
- Yue-Zhi Zhang
- Laboratory of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264000, China
| | - Shu-Jing Ge
- Nursing Department, 970 Hospital of Chinese People's Liberation Army, Yantai, 264002, China
| | - Qing-Zhen Leng
- Cancer Non-Invasive Diagnosis and Treatment Center, 970 Hospital of Chinese People's Liberation Army, No. 7, ZhiChu South Road, Yantai, 264002, China
| | - Jian-Jun Ma
- Cancer Non-Invasive Diagnosis and Treatment Center, 970 Hospital of Chinese People's Liberation Army, No. 7, ZhiChu South Road, Yantai, 264002, China
| | - Han-Chen Liu
- Cancer Non-Invasive Diagnosis and Treatment Center, 970 Hospital of Chinese People's Liberation Army, No. 7, ZhiChu South Road, Yantai, 264002, China.
| |
Collapse
|
4
|
Cheng Y, Du J, Liu R, Dong S, Cai J, Gao F, Liu C. Novel chimeric TLR2/NOD2 agonist CL429 exhibited significant radioprotective effects in mice. J Cell Mol Med 2021; 25:3785-3792. [PMID: 33609010 PMCID: PMC8051721 DOI: 10.1111/jcmm.16252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Severe ionizing radiation causes the acute lethal damage of haematopoietic system and gastrointestinal tract. Here, we found CL429, the novel chimeric TLR2/NOD2 agonist, exhibited significant radioprotective effects in mice. CL429 increased mice survival, protected mice against the lethal damage of haematopoietic system and gastrointestinal tract. CL429 was more effective than equivalent amounts of monospecific (TLR2 or NOD2) and combination (TLR2 + NOD2) of molecules in preventing radiation‐induced death. The radioprotection of CL429 was mainly mediated by activating TLR2 and partially activating NOD2. CL429‐induced radioprotection was largely dependent on the activation of TLR2‐MyD88‐NF‐κB signalling pathway. In conclusion, the data suggested that the co‐activation of TLR2 and NOD2 could induce significant synergistic radioprotective effects and CL429 might be a potential high‐efficiency selective agent.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Suhe Dong
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
6
|
General principles of developing novel radioprotective agents for nuclear emergency. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Liu F, Wang Z, Li W, Zhou L, Du Y, Zhang M, Wei Y. The mechanisms for the radioprotective effect of beta-d-glucan on high linear-energy-transfer carbon ion irradiated mice. Int J Biol Macromol 2019; 131:282-292. [DOI: 10.1016/j.ijbiomac.2019.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
|
8
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
9
|
Du J, Zhang P, Zhao H, Dong S, Yang Y, Cui J, Gao F, Cai J, Liu C. The mechanism for the radioprotective effects of zymosan-A in mice. J Cell Mol Med 2018; 22:2413-2421. [PMID: 29411511 PMCID: PMC5867165 DOI: 10.1111/jcmm.13538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
It proved that Zymosan-A protected the haematopoietic system from radiation-induced damage via Toll-Like Receptor2 in our previous study. In this study, we investigated the potential mechanism for the radioprotective effects of Zymosan-A. The mice were treated with Zymosan-A (50 mg/kg, dissolved in NS) via peritoneal injection 24 and 2 hours before ionizing radiation. Apoptosis of bone marrow cells and the levels of IL-6, IL-12, G-CSF and GM-CSF were evaluated by flow cytometry assay. DNA damage was determined by γ-H2AX foci assay. In addition, RNA sequencing was performed to identify differentially expressed genes (DEGs). Zymosan-A protected bone marrow cells from radiation-induced apoptosis, up-regulated IL-6, IL-12, G-CSF and GM-CSF in bone marrow cells. Zymosan-A also protected cells from radiation-induced DNA damage. Moreover, RNA sequencing analysis revealed that Zymosan-A induced 131 DEGs involved in the regulation of immune system process and inflammatory response. The DEGs were mainly clustered in 18 KEGG pathways which were also associated with immune system processes. Zymosan-A protected bone marrow cells from radiation-induced apoptosis and up-regulated IL-6, IL-12, G-CSF and GM-CSF. Moreover, Zymosan-A might also exhibit radioprotective effects through regulating immune system process and inflammatory response. These results provided new knowledge regarding the radioprotective effect of Zymosan-A.
Collapse
Affiliation(s)
- Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Pei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hainan Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Suhe Dong
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianguo Cui
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|