1
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
2
|
Chekhun V, Martynyuk О, Lukianova Y, Mushii O, Zadvornyi T, Lukianova N. FEATURES OF BREAST CANCER IN PATIENTS OF YOUNG AGE: SEARCH FOR DIAGNOSIS OPTIMIZATION AND PERSONALIZED TREATMENT. Exp Oncol 2023; 45:139-150. [PMID: 37824778 DOI: 10.15407/exp-oncology.2023.02.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/14/2023]
Abstract
The statistical data of the recent decades demonstrate a rapid growth of breast cancer (BCa) incidence and a tendency toward its increase especially in young women. In the structure of morbidity of women in the age group of 18-29 years, BCa ranks first and in the age range of 15-39 years, BCa is one of the leading causes of mortality. According to the data of the epidemiological and clinical studies, the young age is an independent unfavorable prognostic factor of BCa that is associated with an unfavorable prognosis and low survival rates and is considered an important predictor of the disease aggressiveness, a high risk of metastasis and recurrence. The variability of clinicopathological and molecular-biological features of BCa in patients of different age groups as well as the varying course of the disease and different responses to the therapy are mediated by many factors. The analysis of the literature data on the factors and mechanisms of BCa initiation in patients of different age groups demonstrates that the pathogen- esis of BCa depends not only on the molecular-genetic alterations but also on the metabolic disorders caused by the current social and household rhythm of life and nutrition peculiarities. All these factors affect both the general con- dition of the body and the formation of an aggressive microenvironment of the tumor lesion. The identified features of transcriptome and the differential gene expression give evidence of different regulations of the immune response and the metabolic processes in BCa patients of different age groups. Association between the high expression of the components of the stromal microenvironment and the inflammatory immune infiltrate as well as the increased vascu- larization of the tumor lesion has been found in BCa tissue of young patients. Proving the nature of the formation of the landscape comprising molecular-genetic, cytokine, and immune factors of the tumor microenvironment will undoubtedly contribute to our understanding of the mechanisms of tumor growth allowing for the development of algorithms for delineating the groups at high risk of tumor progression, which requires more careful monitoring and personalized treatment approach. Th s will be helpful in the development of innovative technologies for complex BCa treatment.
Collapse
Affiliation(s)
- V Chekhun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine.
| | - О Martynyuk
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - Ye Lukianova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - O Mushii
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - T Zadvornyi
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - N Lukianova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| |
Collapse
|
3
|
Molina Pimienta L, Salgado Sánchez JC, Hernández Cuello I. Implicaciones en el tratamiento de pacientes con cáncer de mama y alteraciones en ARID1A. UNIVERSITAS MÉDICA 2023. [DOI: 10.11144/javeriana.umed64-1.tpcm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ARID1A (AT-rich interaction domain 1A) es una subunidad de los complejos SWI/SNF específicamente mutada en ~20 % de los cánceres humanos primarios. La inactivación de ARID1A a través de mutaciones somáticas y otros mecanismos epigenéticos da como resultado la pérdida de las funciones de guardián y cuidador en las células, lo que promueve la iniciación del tumor. Se ha documentado una correlación entre mutaciones de pérdida de función en ARID1A y la presencia de mutaciones activadoras en PIK3CA, pérdida de la expresión de PTEN y la pérdida de la función de p53. Las mutaciones de ARID1A estaban presentes en el 2,5 % de todos los cánceres de mama; no obstante, el porcentaje de cáncer de mama con mutaciones en ARID1A aumenta en los cánceres metastásicos un 12 %, o en los inflamatorios, un 10 %. La pérdida de la función de la ARID1A en cáncer de mama se adquiere con mayor frecuencia posterior al tratamiento y está asociada con la resistencia al tratamiento hormonal y con agentes quimioterapéuticos. Además, conduce a una reparación deficiente de las rupturas de doble cadena, que sensibilizan las células a los inhibidores de PARP. Por último, las alteraciones en ARID1A podrían ser un biomarcador de respuesta a inhibidores de punto de control.
Collapse
|
4
|
Kong QW, Yang J, Li D, Ding YW, Hu YJ, Xue XC, Shi MZ, Jiang B, Zhou YY, Zhang M, Hu JD, Guo C, Chen JJ, Han YL. Tongguanteng injection reverses paclitaxel resistance via upregulation of TAB1 expression in ovarian cancer in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115728. [PMID: 36126783 DOI: 10.1016/j.jep.2022.115728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongguanteng injection (TGT), the water extract from the stem of the Traditional Chinese hebal medicine of Marsdenia tenacissima (Roxb.) Wight et Arn. has been used as anticancer remedy for decades. TGT was not only used in the treatment of many malignant cancers extensively, but also an adjuvant anticancer drug with chemotherapeutics clinically. AIM OF THE STUDY To evaluate the effects of TGT on reversing paclitaxel (PTX) resistance and investigate the potential mechanism related to TAB1 in ovarian cancer (OC) in vitro and in vivo. MATERIALS AND METHODS The synergistic effect and reversal ratio were determined by CCK8 assay and median-effect principle after the combination of TGT and PTX in OC A2780 and its PTX-resistant (A2780/T) cells. The biological functions in cell apoptosis, migration and invasion of A2780/T cells treated by PTX 4 μM with TGT 20, 40, 80 mg⋅mL-1 for 24 h were evaluated by colony formation, flow cytometry, wound healing and transwell assays. Proteomics technique and bioinformatic analysis were used to indentify the change of TAB1 expression in A2780/T cells induced by TGT. The association between TAB1 expression and human OC was analyzed by gene expression databases. In A2780/T cells, western blotting and colony formation assays were used to investigate the relationship between TAB1 expression and PTX resistance after TAB1 overexpression by TAB1 plasmids. The mechanism of TGT and PTX regulating TAB1 and its related proteins were explored by western blotting and flow cytometry assays after TAB1 knock-down using siTAB1. Moreover, TUNEL staining, immunohistochemistry (IHC) and histopathology were used to observe the antitumor effects, TAB1 and p-p38 expression and the tissues impairments in nude mice xenograft model established by A2780/T cells after the co-treatment with TGT and PTX by in vivo. RESULTS TGT combined with PTX showed the synergistic effect (CI<1), which could reverse the IC50 values of PTX in OC A2780 and A2780/T cells about 23.50 and 6.44 times, respectively. Besides, TGT combined with PTX could significantly inhibit the migration, invasion and promote apoptosis of A2780/T cells. We identified that TGT could induce TAB1 expression in A2780/T cells by proteomics analysis. TAB1 downregulation was significantly associated with tumorigenesis and poor prognosis in OC patients and PTX resistance in A2780/T cells. Furthermore, TGT could activate TAB1/TAK1/p38 MAPK signaling pathway targeting TAB1 and regulate the expression of Bax, Bcl-2 proteins to improve the sensitivity of A2780/T cells to PTX. TGT combined with PTX also showed a greater inhibition in tumor growth than PTX monotherapy in vivo. These promising results show the efficacy of TGT in reversing PTX resistance and provide a potential strategy that targeting TAB1/TAK1/p38 MAPK signaling pathway may improve the chemotherapy sensitivity in OC. CONCLUSIONS Our results revealed that Tongguanteng injection could reverse paclitaxel resistance and the potential mechanism might be associated with the activation of TAB1/TAK1/p38 MAPK signaling pathway in OC in vitro and in vivo. TAB1 might be a pivotal target for reversing PTX resistance. This study will provide a theoretical basis for the combination of Tongguanteng injection and paclitaxel in clinic.
Collapse
Affiliation(s)
- Qian-Wen Kong
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiao Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ya-Wei Ding
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Xiao-Chuan Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mei-Zhi Shi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Bo Jiang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Min Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiu-Dong Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| |
Collapse
|
5
|
Jdeed S, Erdős E, Bálint BL, Uray IP. The Role of ARID1A in the Nonestrogenic Modulation of IGF-1 Signaling. Mol Cancer Res 2022; 20:1071-1082. [PMID: 35320351 PMCID: PMC9381091 DOI: 10.1158/1541-7786.mcr-21-0961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 01/07/2023]
Abstract
Gaining pharmacologic access to the potential of ARID1A, a tumor suppressor protein, to mediate transcriptional control over cancer gene expression is an unresolved challenge. Retinoid X receptor ligands are pleiotropic, incompletely understood tools that regulate breast epithelial cell proliferation and differentiation. We found that low-dose bexarotene (Bex) combined with the nonselective beta-blocker carvedilol (Carv) reduces proliferation of MCF10DCIS.com cells and markedly suppresses ARID1A levels. Similarly, Carv synergized with Bex in MCF-7 cells to suppress cell growth. Chromatin immunoprecipitation sequencing analysis revealed that under nonestrogenic conditions Bex + Carv alters the concerted genomic distribution of the chromatin remodeler ARID1A and acetylated histone H3K27, at sites related to insulin-like growth factor (IGF) signaling. Several distinct sites of ARID1A enrichment were identified in the IGF-1 receptor and IRS1 genes, associated with a suppression of both proteins. The knock-down of ARID1A increased IGF-1R levels, prevented IGF-1R and IRS1 suppression upon Bex + Carv, and stimulated proliferation. In vitro IGF-1 receptor neutralizing antibody suppressed cell growth, while elevated IGF-1R or IRS1 expression was associated with poor survival of patients with ER-negative breast cancer. Our study demonstrates direct impact of ARID1A redistribution on the expression and growth regulation of IGF-1-related genes, induced by repurposed clinical drugs under nonestrogenic conditions. IMPLICATIONS This study underscores the possibility of the pharmacologic modulation of the ARID1A factor to downregulate protumorigenic IGF-1 activity in patients with postmenopausal breast cancer undergoing aromatase inhibitor treatment.
Collapse
Affiliation(s)
- Sham Jdeed
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Erdős
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint L. Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Corresponding Author: Iván Uray, Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen 4032, Hungary
| |
Collapse
|
6
|
Heinze K, Nazeran TM, Lee S, Krämer P, Cairns ES, Chiu DS, Leung SC, Kang EY, Meagher NS, Kennedy CJ, Boros J, Kommoss F, Vollert HW, Heitze F, du Bois A, Harter P, Grube M, Kraemer B, Staebler A, Kommoss FK, Heublein S, Sinn HP, Singh N, Laslavic A, Elishaev E, Olawaiye A, Moysich K, Modugno F, Sharma R, Brand AH, Harnett PR, DeFazio A, Fortner RT, Lubinski J, Lener M, Tołoczko-Grabarek A, Cybulski C, Gronwald H, Gronwald J, Coulson P, El-Bahrawy MA, Jones ME, Schoemaker MJ, Swerdlow AJ, Gorringe KL, Campbell I, Cook L, Gayther SA, Carney ME, Shvetsov YB, Hernandez BY, Wilkens LR, Goodman MT, Mateoiu C, Linder A, Sundfeldt K, Kelemen LE, Gentry-Maharaj A, Widschwendter M, Menon U, Bolton KL, Alsop J, Shah M, Jimenez-Linan M, Pharoah PD, Brenton JD, Cushing-Haugen KL, Harris HR, Doherty JA, Gilks B, Ghatage P, Huntsman DG, Nelson GS, Tinker AV, Lee CH, Goode EL, Nelson BH, Ramus SJ, Kommoss S, Talhouk A, Köbel M, Anglesio MS. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8 + TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol 2022; 256:388-401. [PMID: 34897700 PMCID: PMC9544180 DOI: 10.1002/path.5849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Karolin Heinze
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Tayyebeh M. Nazeran
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Sandra Lee
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Pauline Krämer
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Evan S. Cairns
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
| | - Derek S. Chiu
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Samuel C.Y. Leung
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Eun Young Kang
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Nicola S. Meagher
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Catherine J. Kennedy
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Jessica Boros
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Friedrich Kommoss
- Medizin Campus Bodensee, Institute of Pathology, Friedrichshafen, Germany
| | - Hans-Walter Vollert
- Medizin Campus Bodensee, Department of Gynecology and Obstetrics, Friedrichshafen, Germany
| | - Florian Heitze
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Andreas du Bois
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Marcel Grube
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Bernhard Kraemer
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Annette Staebler
- University Hospital Tübingen, Institute of Pathology and Neuropathology, Tübingen, Germany
| | - Felix K.F. Kommoss
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Sabine Heublein
- University Hospital Heidelberg and National Center for Tumor Diseases, Department of Obstetrics and Gynecology, Heidelberg, Germany
| | - Hans-Peter Sinn
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Naveena Singh
- Barts Health National Health Service Trust, Department of Pathology, London, UK
| | - Angela Laslavic
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Esther Elishaev
- University of Pittsburgh School of Medicine, Department of Pathology, PA, USA
| | - Alex Olawaiye
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Kirsten Moysich
- Roswell Park Cancer Institute, Department of Cancer Prevention and Control, Buffalo, NY, USA
| | - Francesmary Modugno
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Raghwa Sharma
- Westmead Hospital, Tissue Pathology and Diagnostic Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Paul R. Harnett
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- Westmead Hospital, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Renée T. Fortner
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jan Lubinski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Marcin Lener
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Aleksandra Tołoczko-Grabarek
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Cezary Cybulski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Helena Gronwald
- Pomeranian Medical University, Department of Propaedeutics, Physical Diagnostics and Dental Physiotherapy, Szczecin, Poland
| | - Jacek Gronwald
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Penny Coulson
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Mona A El-Bahrawy
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, London, UK
| | - Michael E. Jones
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Minouk J. Schoemaker
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Kylie L. Gorringe
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Women’s Cancer Program, Melbourne, Australia
| | - Ian Campbell
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Cancer Genetics Laboratory, Research Division, Melbourne, Australia
| | - Linda Cook
- The University of New Mexico, Division of Epidemiology and Biostatistics, Albuquerque, NM, USA
| | - Simon A. Gayther
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Los Angeles, CA, USA
| | - Michael E. Carney
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Department of Obstetrics and Gynecology, HI, USA
| | - Yurii B. Shvetsov
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Lynne R. Wilkens
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, CA, USA
| | - Constantina Mateoiu
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Anna Linder
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Linda E. Kelemen
- Medical University of South Carolina, Hollings Cancer Center and Department of Public Health Sciences, Charleston, SC, USA
| | - Aleksandra Gentry-Maharaj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
- University College London, Department of Women’s Cancer, Institute for Women’s Health, London, UK
| | | | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Kelly L. Bolton
- Washington University School of Medicine, Department of Hematology and Oncology, Division of Oncology, St. Louis, MO, USA
| | - Jennifer Alsop
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Mitul Shah
- Addenbrookes Hospital, Department of Histopathology, Cambridge, UK
| | | | - Paul D.P. Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - James D. Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Kara L. Cushing-Haugen
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Holly R. Harris
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Jennifer A. Doherty
- University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, Salt Lake City, UT, USA
| | - Blake Gilks
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Prafull Ghatage
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - David G. Huntsman
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Gregg S. Nelson
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - Anna V. Tinker
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
- University of British Columbia, Department of Medicine, Vancouver, BC, Canada
| | - Cheng-Han Lee
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN, USA
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J. Ramus
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Stefan Kommoss
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Aline Talhouk
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Martin Köbel
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Michael S. Anglesio
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| |
Collapse
|
7
|
Peerapen P, Sueksakit K, Boonmark W, Yoodee S, Thongboonkerd V. ARID1A knockdown enhances carcinogenesis features and aggressiveness of Caco-2 colon cancer cells: An in vitro cellular mechanism study. J Cancer 2022; 13:373-384. [PMID: 35069887 PMCID: PMC8771531 DOI: 10.7150/jca.65511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
Loss of ARID1A, a tumor suppressor gene, is associated with the higher grade of colorectal cancer (CRC). However, molecular and cellular mechanisms underlying the progression and aggressiveness of CRC induced by the loss of ARID1A remain poorly understood. Herein, we evaluated cellular mechanisms underlying the effects of ARID1A knockdown on the carcinogenesis features and aggressiveness of CRC cells. A human CRC cell line (Caco-2) was transfected with small interfering RNA (siRNA) specific to ARID1A (siARID1A) or scrambled (non-specific) siRNA (siControl). Cell death, proliferation, senescence, chemoresistance and invasion were then evaluated. In addition, formation of polyploid giant cancer cells (PGCCs), self-aggregation (multicellular spheroid) and secretion of an angiogenic factor, vascular endothelial growth factor (VEGF), were examined. The results showed that ARID1A knockdown led to significant decreases in cell death and senescence. On the other hand, ARID1A knockdown enhanced cell proliferation, chemoresistance and invasion. The siARID1A-transfected cells also had greater number of PGCCs and larger spheroid size and secreted greater level of VEGF compared with the siControl-transfected cells. These data, at least in part, explain the cellular mechanisms of ARID1A deficiency in carcinogenesis and aggressiveness features of CRC.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
8
|
Wang L, Zhai Q, Lu Q, Lee K, Zheng Q, Hong R, Wang S. Clinical genomic profiling to identify actionable alterations for very early relapsed triple-negative breast cancer patients in the Chinese population. Ann Med 2021; 53:1358-1369. [PMID: 34396843 PMCID: PMC8381897 DOI: 10.1080/07853890.2021.1966086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents about 19% of all breast cancer cases in the Chinese population. Lack of targeted therapy contributes to the poorer outcomes compared with other breast cancer subtypes. Comprehensive genomic profiling helps to explore the clinically relevant genomic alterations (CRGAs) and potential therapeutic targets in very-early-relapsed TNBC patients. METHODS Formalin-fixed paraffin-embedded (FFPE) tumour tissue specimens from 23 patients with very-early-relapsed TNBC and 13 patients with disease-free survival (DFS) more than 36 months were tested by FoundationOne CDx (F1CDx) in 324 genes and select gene rearrangements, along with genomic signatures including microsatellite instability (MSI) and tumour mutational burden (TMB). RESULTS In total, 137 CRGAs were detected in the 23 very-early-relapsed TNBC patients, averaging six alterations per sample. The mean TMB was 4 Muts/Mb, which was higher than that in non-recurrence patients, and is statistically significant. The top-ranked altered genes were TP53 (83%), PTEN (35%), RB1 (30%), PIK3CA (26%) and BRCA1 (22%). RB1 mutation carriers had shorter DFS. Notably, 100% of these patients had at least one CRGA, and 87% of patients had at least one actionable alteration. In pathway analysis, patients who carried a mutation in the cell cycle pathway were more likely to experience very early recurrence. Strikingly, we detected one patient with ERBB2 amplification and one patient with ERBB2 exon20 insertion, both of which were missed by immunohistochemistry (IHC). We also detected novel alterations of ROS1-EPHA7 fusion for the first time, which has not been reported in breast cancer before. CONCLUSIONS The comprehensive genomic profiling can identify novel treatment targets and address the limited options in TNBC patients. Therefore, incorporating F1CDx into TNBC may shed light on novel therapeutic opportunities for these very-early-relapsed TNBC patients.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qinglian Zhai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qianyi Lu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Kaping Lee
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qiufan Zheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| |
Collapse
|
9
|
Cheng X, Zhao JX, Dong F, Cao XC. ARID1A Mutation in Metastatic Breast Cancer: A Potential Therapeutic Target. Front Oncol 2021; 11:759577. [PMID: 34804958 PMCID: PMC8599951 DOI: 10.3389/fonc.2021.759577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Distant metastasis is the principal cause of mortality for breast cancer patients. Targeting specific mutations that have been acquired during the evolution process of advanced breast cancer is a potential means of enhancing the clinical efficacy of treatment strategies. In metastatic breast cancer, ARID1A is the most prevalent mutation of the SWI/SNF complex, which regulates DNA repair, recombination, and gene transcription. The low expression of ARID1A is associated with poor disease-free survival and overall survival of patients with luminal A or HER2-rich breast cancer. In addition, ARID1A plays a prominent role in maintaining luminal characteristics and has an advantage for identifying responses to treatment, including endocrine therapies, HDAC inhibitors and CDK4/6 inhibitors. The therapeutic vulnerabilities initiated by ARID1A alterations encourage us to explore new approaches to cope with ARID1A mutant-related drug resistance or metastasis. In this review, we describe the mutation profiles of ARID1A in metastatic breast cancer and the structure and function of ARID1A and the SWI/SNF complex as well as discuss the potential mechanisms of ARID1A-mediated endocrine resistance and therapeutic potential.
Collapse
Affiliation(s)
- Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jian-Xiong Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
10
|
Wang GH, Ni K, Gu C, Huang J, Chen J, Wang XD, Ni Q. EphA8 inhibits cell apoptosis via AKT signaling and is associated with poor prognosis in breast cancer. Oncol Rep 2021; 46:183. [PMID: 34278497 DOI: 10.3892/or.2021.8134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/11/2021] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin‑producing hepatocellular receptors (Ephs) comprise the largest subfamily of receptor tyrosine kinases and have been reported to be involved in a variety of biological cellular processes, including tumorigenesis and cancer progression. The present study aimed to determine the expression levels and clinicopathological significance of EphA8 in breast cancer (BC) using immunohistochemistry analysis of tissue microarrays. The results of the present study revealed that EphA8 expression levels were upregulated in BC tissue and were associated with tumor size and TNM stage. In addition, upregulated expression levels of EphA8 were identified to be a poor prognostic biomarker for patients with BC. The knockdown of EphA8 expression using short hairpin RNA resulted in increased levels of apoptosis as well as decreased proliferation, migration and invasion of BC cells both in vivo and in vitro. The knockdown of EphA8 also decreased the phosphorylation of AKT, which was accompanied by downregulation of Bcl‑2 expression levels and upregulation of p53, Caspase‑3 and Bax expression levels. Moreover, knockdown of EphA8 expression increased the chemosensitivity of BC cells to paclitaxel. In conclusion, the results of the present study indicated that EphA8 may be a useful prognostic marker in BC and that knockdown of EphA8 may represent a novel strategy in adjuvant chemotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Gui-Hua Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kan Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Changjiang Gu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xu-Dong Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
11
|
Silva-Oliveira R, Pereira FF, Petronilho S, Martins AT, Lameirinhas A, Constâncio V, Caldas-Ribeiro I, Salta S, Lopes P, Antunes L, Castro F, de Sousa SP, Henrique R, Jerónimo C. Clinical Significance of ARID1A and ANXA1 in HER-2 Positive Breast Cancer. J Clin Med 2020; 9:E3911. [PMID: 33276477 PMCID: PMC7761245 DOI: 10.3390/jcm9123911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND trastuzumab is considered the standard of care for human epidermal growth factor receptor-2 (HER-2+) breast cancer patients. Regardless of the benefits of its use, many early-stage patients eventually recur, and usually, the disease progresses within a year. Since about half of the HER-2+ patients do not respond to trastuzumab, new biomarkers of prognosis and prediction are warranted to allow a better patient stratification. Annexin A1 (ANXA1) was previously reported to contribute to trastuzumab resistance through AKT activation. An association between adenine thymine-rich interactive domain 1A (ARID1A) loss and ANXA1 upregulation was also previously suggested by others. METHODS in this study, we examined tissue samples from 215 HER-2+ breast cancer patients to investigate the value of ARID1A and ANXA1 protein levels in trastuzumab response prediction and patient outcome. Expression of ARID1A and ANXA1 were assessed by immunohistochemistry. RESULTS contrary to what was expected, no inverse association was found between ARID1A and ANXA1 expression. HER-2+ (non-luminal) tumours displayed higher ANXA1 expression than luminal B-like (HER-2+) tumours. Concerning trastuzumab resistance, ARID1A and ANXA1 proteins did not demonstrate predictive value as biomarkers. Nevertheless, an association was depicted between ANXA1 expression and breast cancer mortality and relapse. CONCLUSIONS overall, our results suggest that ANXA1 may be a useful prognostic marker in HER-2+ patients. Additionally, its ability to discriminate between HER-2+ (non-luminal) and luminal B-like (HER-2+) patients might assist in patient stratification regarding treatment strategy.
Collapse
Affiliation(s)
- Rita Silva-Oliveira
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Filipa Ferreira Pereira
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Sara Petronilho
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Inês Caldas-Ribeiro
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Paula Lopes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Luís Antunes
- Cancer Epidemiology Group—Research Center & Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Fernando Castro
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A, Jean S, Cadungog MG, Borowsky ME, Drapkin R, Lieberman PM, Abate-Shen CT, Zhang R. ARID1A promotes genomic stability through protecting telomere cohesion. Nat Commun 2019; 10:4067. [PMID: 31492885 PMCID: PMC6731242 DOI: 10.1038/s41467-019-12037-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
ARID1A inactivation causes mitotic defects. Paradoxically, cancers with high ARID1A mutation rates typically lack copy number alterations (CNAs). Here, we show that ARID1A inactivation causes defects in telomere cohesion, which selectively eliminates gross chromosome aberrations during mitosis. ARID1A promotes the expression of cohesin subunit STAG1 that is specifically required for telomere cohesion. ARID1A inactivation causes telomere damage that can be rescued by STAG1 expression. Colony formation capability of single cells in G2/M, but not G1 phase, is significantly reduced by ARID1A inactivation. This correlates with an increase in apoptosis and a reduction in tumor growth. Compared with ARID1A wild-type tumors, ARID1A-mutated tumors display significantly less CNAs across multiple cancer types. Together, these results show that ARID1A inactivation is selective against gross chromosome aberrations through causing defects in telomere cohesion, which reconciles the long-standing paradox between the role of ARID1A in maintaining mitotic integrity and the lack of genomic instability in ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Bo Zhao
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianhuang Lin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Lijie Rong
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joseph Zundell
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Stephanie Jean
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark G Cadungog
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Mark E Borowsky
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Cory T Abate-Shen
- Department of Pharmacology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Gong Z, Shen X, Yang J, Lai L, Wei S. Receptor Binding Inhibitor Suppresses Carcinogenesis of Cervical Cancer by Depressing Levels of FSHR and ERβ in Mice. Anticancer Agents Med Chem 2019; 19:1719-1727. [PMID: 31368878 DOI: 10.2174/1871520619666190801094059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/24/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND FSH Receptor Binding Inhibitor (FRBI) blocked the binding of FSH to FSHR. Our initial study revealed FRBI reduced the maturation rate, enhanced the apoptosis of sheep Cumulus-Oocyte Complex (COCs). Little is known about whether FRBI modulates ERβ and FSHR levels in the normal uterine and cancerous tissues. The present study aimed to evaluate the FRBI effects on the expressions of Estrogen Receptor-beta (ERβ) and FSH receptor (FSHR) in the uteri. METHODS 150 mice were assigned to FRBI+FSH (COM), FSH and control groups (CG). Mice of COM-1, COM-2 and COM-3 groups were simultaneously intramuscularly injected with 500, 750 and 1000 µg FRBI with 10 IU FSH, respectively for five days. Western blotting and qPCR were utilized to determine the expression of ERβ and FSHR. RESULTS In comparison with FSH group, uterine lumen and glands of COM groups became narrow. The uterine wall and endometrial epithelium were thinned, and uterine lumen became narrow. Epithelial cells were decreased. Uterine wall thicknesses of COM-1, COM-2 and COM-3 groups were reduced by 6.49%, 14.89% and 15.69% on day 30 as compared with FSH group. Uterine perimetrium thicknesses of COM-1, COM-2 and COM-3 groups were reduced by 16.17%, 17.93% and 19.92% on day 20 in comparison with FSH group. Levels of FSHR mRNAs and proteins of COM-1, COM-2 and COM-3 groups were less than FSH group on days 20 and 30 (P<0.05). ERβ protein of COM-3 group was less than FSH group. Serum estradiol (E2) and FSH concentrations of COM-2 and COM-3 were lower than that of FSH group on day 30. CONCLUSION FRBI could decrease UWT and UPT, also block the uterine development, decline expression levels of ERβ and FSHR protein. Additionally, FRBI reduced the secretion of secretion of FSH and E2. Downregulating expression of FSHR and ERβ may be a potential treatment regimen for cervical cancer patients.
Collapse
Affiliation(s)
- Zhuandi Gong
- Hospital of Medicine College, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Shen
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621 010, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Luju Lai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.,Research Center of Animal Cell Engineering and Technology of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China
| |
Collapse
|
14
|
Gong Z, Shen X, Yang J, Yang K, Bai S, Wei S. FSH receptor binding inhibitor up-regulates ARID1A and PTEN genes associated with ovarian cancers in mice. Braz J Med Biol Res 2019; 52:e8381. [PMID: 31241714 PMCID: PMC6596365 DOI: 10.1590/1414-431x20198381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Experiments were conducted to determine if the follicle-stimulating hormone (FSH) receptor binding inhibitor (FRBI) impacts the expression levels of AT-rich interactive domain-containing protein 1A (ARID1A) and phosphatase and tensin homolog (PTEN) in ovaries and blood, as well as expressions of follicle-stimulating hormone cognate receptor (FSHR) gene and proteins. Mice in FRBI-10, FRBI-20, FRBI-30, and FRBI-40 groups were intramuscularly injected with 10, 20, 30, and 40 mg FRBI/kg, respectively, for five consecutive days. Western blotting and qRT-PCR were utilized to determine expression levels of ARID1A and PTEN proteins and mRNAs. Serum ARID1A and PTEN concentrations of the FRBI-40 group were higher than the control group (CG) and FSH group (P<0.05). FSHR mRNA levels of FRBI-20, FRBI-30, and FRBI-40 groups were lower than that of CG and FSH groups on day 15 (P<0.05 or P<0.01). Expression levels of FSHR proteins of FRBI-30 and FRBI-40 groups were lower than those of CG and FSH groups (P<0.05). Levels of ARID1A and PTEN proteins of the FRBI-30 group were greater than CG on days 20 and 30 (P<0.05). FRBI doses had significant positive correlations to levels of ARID1A and PTEN proteins. Additionally, ARID1A and PTEN had negative correlations to FSHR mRNAs and proteins. A high dose of FRBI could promote the expression levels of ARID1A and PTEN proteins in ovarian tissues. FRBI increased serum concentrations of ARID1A and PTEN. However, FRBI depressed expression levels of FSHR mRNAs and proteins in mouse ovaries.
Collapse
Affiliation(s)
- Zhuandi Gong
- Medicine College Hospital, Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Shen
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengju Bai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
15
|
Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 2018; 37:289. [PMID: 30482236 PMCID: PMC6260744 DOI: 10.1186/s13046-018-0945-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yueyong Li
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yanfei Ma
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Jinlan Lu
- Department of Dental, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yongcheng Chen
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiulan Jiang
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiang Qin
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Lifeng Zhao
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qianfang Huang
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Zhizhai Luo
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Shiqing Huang
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
- Department of Tumor, Youjiang Medical College Affiliated Hospital, Zhongshan Second Road, No. 18, Baise, 533000 Guangxi China
| | - Zhongheng Wei
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| |
Collapse
|
16
|
Narayan RR, Creasy JM, Goldman DA, Gönen M, Kandoth C, Kundra R, Solit DB, Askan G, Klimstra DS, Basturk O, Allen PJ, Balachandran VP, D'Angelica MI, DeMatteo RP, Drebin JA, Kingham TP, Simpson AL, Abou-Alfa GK, Harding JJ, O'Reilly EM, Butte JM, Matsuyama R, Endo I, Jarnagin WR. Regional differences in gallbladder cancer pathogenesis: Insights from a multi-institutional comparison of tumor mutations. Cancer 2018; 125:575-585. [PMID: 30427539 DOI: 10.1002/cncr.31850] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although rare in the United States, gallbladder cancer (GBCA) is a common cause of cancer death in some parts of the world. To investigate regional differences in pathogenesis and outcomes for GBCA, tumor mutations were analyzed from a sampling of specimens. METHODS Primary tumors from patients with GBCA who were treated in Chile, Japan, and the United States between 1999 and 2016 underwent targeted sequencing of known cancer-associated genes. Fisher exact and Kruskal-Wallis tests assessed differences in clinicopathologic and genetic factors. Kaplan-Meier methods evaluated differences in overall survival from the time of surgery between mutations. RESULTS A total of 81 patients were included. Japanese patients (11 patients) were older (median age, 72 years [range, 54-81 years]) compared with patients from Chile (21 patients; median age, 59 years [range, 32-73 years]) and the United States (49 patients; median age, 66 years [range, 46-87 years]) (P = .002) and had more well-differentiated tumors (46% vs 0% for Chile/United States; P < .001) and fewer gallstone-associated cancers (36% vs 67% for Chile and 69% for the United States; P = .13). Japanese patients had a median mutation burden of 6 (range, 1-23) compared with Chile (median mutation burden, 7 [range, 3-20]) and the United States (median mutation burden, 4 [range, 0-27]) (P = .006). Tumors from Japanese patients lacked AT-rich interaction domain 1A (ARID1A) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations, whereas Chilean tumors lacked Erb-B2 receptor tyrosine kinase 3 (ERBB3) and AT-rich interaction domain 2 (ARID2) mutations. SMAD family member 4 (SMAD4) was found to be mutated similarly across centers (38% in Chile, 36% in Japan, and 27% in the United States; P = .68) and was univariately associated with worse overall survival (median, 10 months vs 25 months; P = .039). At least one potentially actionable gene was found to be altered in 80% of tumors. CONCLUSIONS Differences in clinicopathologic variables suggest the possibility of distinct GBCA pathogenesis in Japanese patients, which may be supported by differences in mutation pattern. Among all centers, SMAD4 mutations were detected in approximately one-third of patients and may represent a converging factor associated with worse survival. The majority of patients carried mutations in actionable gene targets, which may inform the design of future trials.
Collapse
Affiliation(s)
- Raja R Narayan
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - John M Creasy
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cyriac Kandoth
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gokce Askan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter J Allen
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald P DeMatteo
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amber L Simpson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan K Abou-Alfa
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James J Harding
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean M Butte
- Department of Gastrointestinal Surgery, Arturo Lopez Perez Foundation Cancer Institute, Santiago, Chile
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Lin YF, Tseng IJ, Kuo CJ, Lin HY, Chiu IJ, Chiu HW. High-level expression of ARID1A predicts a favourable outcome in triple-negative breast cancer patients receiving paclitaxel-based chemotherapy. J Cell Mol Med 2018; 22:2458-2468. [PMID: 29392887 PMCID: PMC5867090 DOI: 10.1111/jcmm.13551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022] Open
Abstract
Paclitaxel‐based chemotherapy is a common strategy to treat patients with triple‐negative breast cancer (TNBC). As paclitaxel resistance is still a clinical issue in treating TNBCs, identifying molecular markers for predicting pathologic responses to paclitaxel treatment is thus urgently needed. Here, we report that an AT‐rich interaction domain 1A (ARID1A) transcript is up‐regulated in paclitaxel‐sensitive TNBC cells but down‐regulated in paclitaxel‐resistant cells upon paclitaxel treatment. Moreover, ARID1A expression was negatively correlated with the IC50 concentration of paclitaxel in the tested TNBC cell lines. Kaplan‐Meier analyses revealed that ARID1A down‐regulation was related to a poorer response to paclitaxel‐based chemotherapy in patients with TNBCs as measured by the recurrence‐free survival probability. The pharmaceutical inhibition with p38MAPK‐specific inhibitor SCIO‐469 revealed that p38MAPK‐related signalling axis regulates ARID1A expression and thereby modulates paclitaxel sensitivity in TNBC cells. These findings suggest that ARID1A could be used as a prognostic factor to estimate the pathological complete response for TNBC patients who decide to receive paclitaxel‐based chemotherapy.
Collapse
Affiliation(s)
- Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ing-Jy Tseng
- School of Gerontology Healthy Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Breast Surgery and General Surgery, Department of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City, Taiwan
| | - I-Jen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|