1
|
Busà R, Bulati M, Badami E, Zito G, Maresca DC, Conaldi PG, Ercolano G, Ianaro A. Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Front Cell Dev Biol 2022; 10:907572. [PMID: 35757002 PMCID: PMC9221069 DOI: 10.3389/fcell.2022.907572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer immunotherapy has led to impressive advances in cancer treatment. Unfortunately, in a high percentage of patients is difficult to consistently restore immune responses to eradicate established tumors. It is well accepted that adaptive immune cells, such as B lymphocytes, CD4+ helper T lymphocytes, and CD8+ cytotoxic T-lymphocytes (CTLs), are the most effective cells able to eliminate tumors. However, it has been recently reported that innate immune cells, including natural killer cells (NK), dendritic cells (DC), macrophages, myeloid-derived suppressor cells (MDSCs), and innate lymphoid cells (ILCs), represent important contributors to modulating the tumor microenvironment and shaping the adaptive tumor response. In fact, their role as a bridge to adaptive immunity, make them an attractive therapeutic target for cancer treatment. Here, we provide a comprehensive overview of the pleiotropic role of tissue-resident innate immune cells in different tumor contexts. In addition, we discuss how current and future therapeutic approaches targeting innate immune cells sustain the adaptive immune system in order to improve the efficacy of current tumor immunotherapies.
Collapse
Affiliation(s)
- Rosalia Busà
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Ester Badami
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- *Correspondence: Giuseppe Ercolano,
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
3
|
Jiang F, Liu H, Peng F, Liu Z, Ding K, Song J, Li L, Chen J, Shao Q, Yan S, De Veirman K, Vanderkerken K, Fu R. Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0430. [PMID: 33960177 PMCID: PMC8330530 DOI: 10.20892/j.issn.2095-3941.2020.0430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Myeloma bone disease (MBD) is the most common complication of multiple myeloma (MM). Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease. However, the mechanism of C3a/C4a in osteoclasts MM patients remains unclear. METHODS The formation and function of osteoclasts were analyzed after adding C3a/C4a in vitro. RNA-seq analysis was used to screen the potential pathways affecting osteoclasts, and the results were verified by Western blot, qRT-PCR, and pathway inhibitors. RESULTS The osteoclast area per view induced by 1 μg/mL (mean ± SD: 50.828 ± 12.984%) and 10 μg/mL (53.663 ± 12.685%) of C3a was significantly increased compared to the control group (0 μg/mL) (34.635 ± 8.916%) (P < 0.001 and P < 0.001, respectively). The relative mRNA expressions of genes, OSCAR/TRAP/RANKL/cathepsin K, induced by 1 μg/mL (median: 5.041, 3.726, 1.638, and 4.752, respectively) and 10 μg/mL (median: 5.140, 3.702, 2.250, and 5.172, respectively) of C3a was significantly increased compared to the control group (median: 3.137, 2.004, 0.573, and 2.257, respectively) (1 μg/mL P = 0.001, P = 0.003, P < 0.001, and P = 0.008, respectively; 10 μg/mL: P < 0.001, P = 0.019, P < 0.001, and P = 0.002, respectively). The absorption areas of the osteoclast resorption pits per view induced by 1 μg/mL (mean ± SD: 51.464 ± 11.983%) and 10 μg/mL (50.219 ± 12.067%) of C3a was also significantly increased (33.845 ± 8.331%) (P < 0.001 and P < 0.001, respectively) compared to the control. There was no difference between the C4a and control groups. RNA-seq analysis showed that C3a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase (PI3K) signaling pathway. The relative expressions of PIK3CA/phosphoinositide dependent kinase-1 (PDK1)/serum and glucocorticoid inducible protein kinases (SGK3) genes and PI3K/PDK1/p-SGK3 protein in the C3a group were significantly higher than in the control group. The activation role of C3a in osteoclasts of MM patients was reduced by the SGK inhibitor (EMD638683). CONCLUSIONS C3a activated osteoclasts by regulating the PI3K/PDK1/SGK3 pathways in MM patients, which was reduced using a SGK inhibitor. Overall, our results identified potential therapeutic targets and strategies for MBD patients.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
5
|
Su C, Tao D, Ren L, Guo S, Zhou W, Wu H, Jiang H. The effective role of sodium copper chlorophyllin on the dysfunction of bone marrow mesenchymal stem cells in multiple myeloma via regulating TGF-β1. Tissue Cell 2020; 67:101406. [PMID: 32835939 DOI: 10.1016/j.tice.2020.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The osteoblast differentiation of bone marrow-derived stem cells (BMSCs) is impaired in multiple myeloma (MM). We investigated the effects of sodium copper chlorophyllin (SCC) on osteoblast differentiation ability of BMSCs from MM. METHODS Clinical bone marrow samples were collected. Fluorescence Activated Cell Sorter (FACS) was used to identify surface markers of BMSCs. BMSCs were treated with different concentrations of SCC and cell viability was detected by MTT assay. Relative mRNA and protein expressions of transforming growth factor-β1 (TGF-β1), SMAD2/3, osteogenic differentiation indicators (RUNX2 and OCN) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Alkaline phosphatase (ALP) was stained for activity detection. Formation of calcium nodus of BMSCs was examined by Alizarin Red S staining. RESULTS CD90 and CD105 were high-expressed, but CD34 and CD45 were not expressed in BMSCs. BMSCs in MM group showed a lower expression of TGF-β1 and a lower degree of osteogenic differentiation. SCC enhanced activities of BMSCs, ALP activity, and formation of calcium nodus, activated TGF-β1, SMAD2/3 pathway and increased RUNX2 and OCN expressions in BMSCs. Silencing TGF-β1 reversed the effects of SCC on BMSCs in MM. CONCLUSION SCC could effectively improve the proliferation and osteogenic differentiation of BMSCs in MM through regulating TGF-β1.
Collapse
Affiliation(s)
- Chuanyong Su
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Diehong Tao
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Li Ren
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Shuping Guo
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Wenfei Zhou
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Haiying Wu
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, Zhejiang Province, 310012, China.
| |
Collapse
|
6
|
Shimizu K, Iyoda T, Yamasaki S, Kadowaki N, Tojo A, Fujii SI. NK and NKT Cell-Mediated Immune Surveillance against Hematological Malignancies. Cancers (Basel) 2020; 12:cancers12040817. [PMID: 32231116 PMCID: PMC7226455 DOI: 10.3390/cancers12040817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Recent cancer treatment modalities have been intensively focused on immunotherapy. The success of chimeric antigen receptor T cell therapy for treatment of refractory B cell acute lymphoblastic leukemia has pushed forward research on hematological malignancies. Among the effector types of innate lymphocytes, natural killer (NK) cells show great importance in immune surveillance against infectious and tumor diseases. Particularly, the role of NK cells has been argued in either elimination of target tumor cells or escape of tumor cells from immune surveillance. Therefore, an NK cell activation approach has been explored. Recent findings demonstrate that invariant natural killer T (iNKT) cells capable of producing IFN-γ when optimally activated can promptly trigger NK cells. Here, we review the role of NKT and/or NK cells and their interaction in anti-tumor responses by highlighting how innate immune cells recognize tumors, exert effector functions, and amplify adaptive immune responses. In addition, we discuss these innate lymphocytes in hematological disorders, particularly multiple myeloma and acute myeloid leukemia. The immune balance at different stages of both diseases is explored in light of disease progression. Various types of innate immunity-mediated therapeutic approaches, recent advances in clinical immunotherapies, and iNKT-mediated cancer immunotherapy as next-generation immunotherapy are then discussed.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan;
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| |
Collapse
|
7
|
Jiang F, Liu H, Liu Z, Yan S, Chen J, Shao Q, Li L, Song J, Wang G, Shao Z, Fu R. Deficient invariant natural killer T cells had impaired regulation on osteoclastogenesis in myeloma bone disease. J Cell Mol Med 2018; 22:2706-2716. [PMID: 29473714 PMCID: PMC5908096 DOI: 10.1111/jcmm.13554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Recent research showed that invariant natural killer T (iNKT) cells take part in the regulation of osteoclastogenesis. While the role of iNKT cells in myeloma bone disease (MBD) remains unclear. In our study, the quantity of iNKT cells and the levels of cytokines produced by them were measured by flow cytometry. iNKT cells and osteoclasts were induced from peripheral blood mononuclear cells after activation by α‐GalCer or RANKL in vitro. Then, gene expressions and the levels of cytokines were determined by RT‐PCR and ELISA, respectively. The results showed that the quantity of iNKT and production of IFN‐γ by iNKT cells were significantly decreased in newly diagnosed MM (NDMM), and both negatively related with severity of bone disease. Then, the osteoclasts from healthy controls were cultured in vitro and were found to be down‐regulated after α‐GalCer‐stimulated, while there was no significant change with or without α‐GalCer in NDMM patients, indicating that the regulation of osteoclastogenesis by iNKT cells was impaired. Furthermore, the inhibition of osteoclastogenesis by iNKT cells was regulated by IFN‐γ production, which down‐regulated osteoclast‐associated genes. In conclusion, the role of α‐GalCer‐stimulated iNKT cells in regulation of osteoclastogenesis was impaired in MBD, as a result of iNKT cell dysfunction.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyang Yan
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|