1
|
Zhang T, Qiao C, Yang Y, Yuan Y, Zhao Z, Miao Y, Zhao Q, Zhang R, Zheng H. Ceftazidime is a potential drug to inhibit cell proliferation by increasing cellular p27. J Antibiot (Tokyo) 2024; 77:697-705. [PMID: 38898184 DOI: 10.1038/s41429-024-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The development of new therapeutic uses for existing drugs is important for the treatment of some diseases. Cephalosporin antibiotics stand as the most extensively utilized antibiotics in clinical practice, effectively combating bacterial infections. Here, we found that the antimicrobial drug ceftazidime strongly upregulates p27 protein levels by inhibiting p27 ubiquitination. The p27 protein is a classic negative regulator of the cell cycle. Next, we demonstrated that ceftazidime can impede the cell cycle from G1 to S phase, thus inhibiting cell proliferation. Furthermore, we found that ceftazidime promotes p27 expression and inhibits cell proliferation by reducing Skp2, which is a substrate recognition component of the Skp2-Cullin-F-box (SCF) ubiquitin ligase. Moreover, ceftazidime downregulates transcriptional expression of Skp2. Importantly, we demonstrated that ceftazidime inhibited the proliferation of tumor cells in vivo. These findings reveal ceftazidime-mediated inhibition of cell proliferation through the Skp2-p27 axis, and could provide a potential strategy for anti-tumor therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Caixia Qiao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yunshan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- The First Clinical Medical School, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenglan Zhao
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Miao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Hui Zheng
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Lee HC, Lai WL, Lin CY, Zeng CW, Sheu JC, Chou TB, Tsai HJ. Anp32a Promotes Neuronal Regeneration after Spinal Cord Injury of Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms232415921. [PMID: 36555564 PMCID: PMC9786895 DOI: 10.3390/ijms232415921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Lin Lai
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chih-Wei Zeng
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Tze-Bin Chou
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Ji Z, Wang J, Yang S, Tao S, Shen C, Wei H, Li Q, Jin P. Graphene oxide accelerates diabetic wound repair by inhibiting apoptosis of Ad-MSCs via Linc00324/miR-7977/STK4 pathway. FASEB J 2022; 36:e22623. [PMID: 36269304 DOI: 10.1096/fj.202201079rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Many studies have shown that graphene oxide (GO) promotes proliferation and differentiation of a variety of stem cells. However, its effect on adipose-derived mesenchymal stem cell (Ad-MSCs) apoptosis is still unclear. Apoptosis is a significant factor affecting stem cell-based treatment of diabetic wounds. Therefore, we explored the effect of GO on Ad-MSC apoptosis and diabetic wound healing. In this study, qRT-PCR was used to detect Ad-MSC expression of LncRNAs, miRNAs, and mRNAs under high-glucose environment. RNA immunoprecipitation (RIP), RNA pull-down, and luciferase assays were used to detect interactions of specific lncRNAs, miRNAs, and mRNAs. The effects of GO on Ad-MSC apoptosis were explored by flow cytometry, TUNEL assay, and Western blot. A diabetic wound model was used to explore the function of Linc00324 on Ad-MSC reparative properties in vivo. As a result, GO inhibited high glucose-induced apoptosis in Ad-MSCs, and Linc00324 contributed to the anti-apoptotic effect of GO. RIP and RNA pull-down confirmed that Linc00324 directly interacted with miR-7977, functioning as a miRNA sponge to regulate expression of the miR-7977 target gene STK4 (MST1) and downstream signaling pathways. In addition, GO reduced the apoptosis of Ad-MSCs in wounds and promoted wound healing. Taken together, these findings suggest GO may be a superior auxiliary material for Ad-MSCs to facilitate diabetic wound healing via the Linc00324/miR-7977/STK4 pathway.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Jian Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shuai Yang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shengjun Tao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Caiqi Shen
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hanxiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, P.R. China.,Jiangsu Cancer Biotherapy Institute, Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
5
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
6
|
Transcription factor SNAI2 exerts pro-tumorigenic effects on glioma stem cells via PHLPP2-mediated Akt pathway. Cell Death Dis 2022; 13:516. [PMID: 35654777 PMCID: PMC9163135 DOI: 10.1038/s41419-021-04481-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023]
Abstract
The current study aimed to investigate the effects associated with SNAI2 on the proliferation of glioma stem cells (GSCs) to elucidate its underlying molecular mechanism in the development of glioma. The expression of Snail family transcriptional repressor 2 (SNAI2) in glioma tissues was initially predicted via bioinformatics analysis and subsequently confirmed by reverse transcription quantitative polymerase chain reaction (RT-qPCR), which revealed that SNAI2 was highly expressed in glioma tissues as well as GSCs, with an inverse correlation with overall glioma patient survival detected. Loss- and gain- of-function assays were performed to determine the roles of SNAI2 and pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2) on GSC viability, proliferation and apoptosis. Data were obtained indicating that SNAI2 promoted the proliferation of GSCs, while overexpressed PHLPP2 brought about a contrasting trend. As detected by chromatin immunoprecipitation, RT-qPCR and agarose gel electrophoresis, SNAI2 bound to the promoter region of PHLPP2 and repressed the transcription of PHLPP2 while SNAI2 was found to inhibit PHLPP2 resulting in activation of the Akt pathway. Finally, the roles of SNAI2 and PHLPP2 were verified in glioma growth in nude mice xenografted with tumor. Taken together, the key findings of the present study suggest that SNAI2 may promote the proliferation of GSCs through activation of the Akt pathway by downregulating PHLPP2.
Collapse
|
7
|
The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions. Exp Mol Pathol 2022; 127:104787. [DOI: 10.1016/j.yexmp.2022.104787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/15/2022] [Accepted: 05/21/2022] [Indexed: 01/02/2023]
|
8
|
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5791471. [PMID: 35280441 PMCID: PMC8913125 DOI: 10.1155/2022/5791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.
Collapse
|
9
|
Xu Y, Chen J, He G, Zhang Y. CTR9-mediated JAK2/STAT3 pathway promotes the proliferation, migration, and invasion of human glioma cells. J Clin Lab Anal 2021; 35:e23943. [PMID: 34369006 PMCID: PMC8418497 DOI: 10.1002/jcla.23943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background CTR9 (Cln three requiring 9) has been reported to be implicated in protein modification and oncogenesis of several human cancers. However, the protein expression and mechanism of CTR9 in glioma progression remain unclear. Methods We analyzed mRNA expression of CTR9 and CTR9‐related survival curves in the public database. Then, we detected CTR9 expression in glioma tissues and constructed U251 and U87 cells with stable silencing or overexpression of CTR9. Cell function tests and Western blot were conducted to explore the effects of CTR9 on glioma proliferation, invasion and migration, and the specific mechanism. All the date was presented as means ± SEM. Two‐sample t test and one‐way analysis of variance (ANOVA) were used to identify whether there was a significant difference between each group of data. Results We found that CTR9 was overexpressed in glioma and inversely associated with glioma patient survival. The results manifested that knockdown of CTR9 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression facilitated them. The underlying molecular mechanism may involve the regulation of JAK2/STAT3 pathway by CTR9. Conclusion Our present study indicates that CTR9 is highly expressed in glioma and related to glioma grading and prognosis. CTR9 regulates malignant behaviors of glioma cells by activating JAK2/STAT3 pathway. Therefore, CTR9 may be a promising biomarker for the targeted therapy and prognosis evaluation of glioma.
Collapse
Affiliation(s)
- Yang Xu
- Department of neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiaguo Chen
- Department of neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Gao He
- Breast Disease Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuhai Zhang
- Department of neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Tian Z, Liu Z, Fang X, Cao K, Zhang B, Wu R, Wen X, Wen Q, Shi H, Wang R. ANP32A promotes the proliferation, migration and invasion of hepatocellular carcinoma by modulating the HMGA1/STAT3 pathway. Carcinogenesis 2021; 42:493-506. [PMID: 33332531 DOI: 10.1093/carcin/bgaa138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) has been reported to play an essential role in the development and progression of various human cancers. However, its expression pattern and possible mechanism in human hepatocellular carcinoma (HCC) remain to be elucidated. In this study, we used western blot and immunohistochemical staining to detect protein expression. The effects of ANP32A on the proliferation, migration and invasion of HCC cells were examined using 5-ethynyl-20-deoxyuridine (EdU), colony formation, CCK-8, and transwell assays. RT-qPCR was performed to detect mRNA expression. The interaction between ANP32A and the high mobility group A1 (HMGA1) mRNA was assessed using RNA immunoprecipitation (RIP). The tumorigenicity of ANP32A was assessed by establishing a xenograft tumor model in Balb/c nude mice. We found that the ANP32A protein was expressed at high levels in patients with HCC, which was associated with a poor prognosis. Functional experiments revealed that the silencing of ANP32A inhibited the proliferation, migration, and invasion of HCC cells, whereas overexpression of ANP32A promoted these processes. Further investigations indicated that ANP32A bound the HMGA1 mRNA and maintained its stability to promote the expression of HMGA1, thereby increasing the expression and activation of STAT3. Finally, a xenograft tumor model of Balb/c nude mice confirmed the tumorigenicity of ANP32A. This study found that ANP32A is up-regulated in patients with HCC and may accelerate the proliferation, migration and invasion of HCC cells by modulating the HMGA1/STAT3 pathway.
Collapse
Affiliation(s)
- Zilu Tian
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyi Liu
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaokang Fang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Wu
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quan Wen
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Qi J, Wang Z, Zhao Z, Liu L. EIF3J-AS1 promotes glioma cell growth via up-regulating ANXA11 through sponging miR-1343-3p. Cancer Cell Int 2020; 20:428. [PMID: 32905397 PMCID: PMC7469350 DOI: 10.1186/s12935-020-01487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/07/2020] [Indexed: 01/29/2023] Open
Abstract
Background Glioma is one prevalent malignant tumor originates from the central nervous system. Dysregulation of long non-coding RNAs (lncRNAs) has been found to be a molecular signature behind the pathology of a variety of cancers, including glioma. EIF3J antisense RNA 1 (EIF3J-AS1) is a novel lncRNA, whose performance in carcinogenesis has been unfolded. Nevertheless, the role of EIF3J-AS1 has never been investigated in glioma. Methods qRT-PCR analysis was adopted to evaluate the relative levels of RNAs. In vitro functional assays, including colony formation, EdU, TUNEL and caspase-3/8/9 activity assays were conducted to study the impacts of EIF3J-AS1 on glioma. Dual-luciferase activity assays, RNA pull down assay and RIP assay were performed to elucidate molecular interplay among genes. Results EIF3J-AS1 was overexpressed in glioma cell lines. Knockdown of EIF3J-AS1 hampered glioma malignant phenotypes. MiR-1343-3p could bind to EIF3J-AS1. Moreover, miR-1343-3p targeted Annexin A11 (ANXA11) in its 3′UTR region. Mechanistically, EIF3J-AS1 relieved ANXA11 from miR-1343-3p silencing in the EIF3J-AS1/miR-1343-3p/ANXA11 RNA induced silencing complex (RISC), thus eliciting promoting effects on glioma progression. MiR-1343-3p inhibitor and ANXA11 overexpression offset the inhibitory impacts of EIF3J-AS1 silencing on glioma development. Conclusion EIF3J-AS1/miR-1343-3p/ANXA11 axis significantly affected biological behaviors in glioma, suggesting new therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Jianguo Qi
- Department of Neurosuigery, The Third People's Hospital of Jinan, Jinan, 250101 Shandong China
| | - Zhengrui Wang
- Department of Neurosurgery, Chengyang People's Hospital of Qingdao, Qingdao, 266109 Shandong China
| | - Zhensheng Zhao
- Department of Hyperbaric Oxygen Therapy, Yidu Central Hospital of Weifang, Weifang, 262500 Shandong China
| | - Lijun Liu
- Department of Neurosurgery, Xiangyang No.1 People's Hospital Affiliated to Hubei University of Medicine, NO.15 Jiefang Road, Fancheng District, Xiangyang, 441000 Hubei China
| |
Collapse
|
12
|
Dekker LJM, Kannegieter NM, Haerkens F, Toth E, Kros JM, Steenhoff Hov DA, Fillebeen J, Verschuren L, Leenstra S, Ressa A, Luider TM. Multiomics profiling of paired primary and recurrent glioblastoma patient tissues. Neurooncol Adv 2020; 2:vdaa083. [PMID: 32793885 PMCID: PMC7415260 DOI: 10.1093/noajnl/vdaa083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Despite maximal therapy with surgery, chemotherapy, and radiotherapy, glioblastoma (GBM) patients have a median survival of only 15 months. Almost all patients inevitably experience symptomatic tumor recurrence. A hallmark of this tumor type is the large heterogeneity between patients and within tumors itself which relates to the failure of standardized tumor treatment. In this study, tissue samples of paired primary and recurrent GBM tumors were investigated to identify individual factors related to tumor progression. Methods Paired primary and recurrent GBM tumor tissues from 8 patients were investigated with a multiomics approach using transcriptomics, proteomics, and phosphoproteomics. Results In the studied patient cohort, large variations between and within patients are observed for all omics analyses. A few pathways affected at the different omics levels partly overlapped if patients are analyzed at the individual level, such as synaptogenesis (containing the SNARE complex) and cholesterol metabolism. Phosphoproteomics revealed increased STMN1(S38) phosphorylation as part of ERBB4 signaling. A pathway tool has been developed to visualize and compare different omics datasets per patient and showed potential therapeutic drugs, such as abobotulinumtoxinA (synaptogenesis) and afatinib (ERBB4 signaling). Afatinib is currently in clinical trials for GBM. Conclusions A large variation on all omics levels exists between and within GBM patients. Therefore, it will be rather unlikely to find a drug treatment that would fit all patients. Instead, a multiomics approach offers the potential to identify affected pathways on the individual patient level and select treatment options.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | - Emma Toth
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Theo M Luider
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Li C, Hu G, Wei B, Wang L, Liu N. lncRNA LINC01494 Promotes Proliferation, Migration And Invasion In Glioma Through miR-122-5p/CCNG1 Axis. Onco Targets Ther 2019; 12:7655-7662. [PMID: 31571916 PMCID: PMC6756415 DOI: 10.2147/ott.s213345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are recognized as key effectors in tumor, including glioma. LINC01494 is an uncharacterized novel lncRNA. In this research, we aimed to investigate the function of LINC01494 in glioma. Methods Gene relative expression was analyzed by qRT-PCR method. CCK8, colony formation and Transwell assay was used to determine cell proliferation, migration and invasion. Bioinformatics analyses were used to predict the target of LINC01494 and miR-122-5p. Luciferase reporter assay was utilized to validate the interactions between LINC01494 and miR-122-5p or CCNG1 and miR-122-5p. Results LINC01494 was identified as a significantly upregulated lncRNA in glioma through bioinformatics analysis. Furthermore, LINC01494 upregulation indicated poor prognosis. Meanwhile, in vitro investigation indicated that silencing LINC01494 with siRNAs obviously inhibited the proliferation, cell cycle, migration and invasion of glioma cells. Besides, it is found that LINC01494 expression was negatively correlated with miR-122-5p. We demonstrated that LINC01494 inhibited miR-122-5p to upregulate CCNG1 expression through direct interaction. Rescue assay further demonstrated that LINC01494/miR-122-5p/CCNG1 signaling cascade plays a critical role in regulating glioma cell proliferation, migration and invasion. Conclusion Taken together, our findings demonstrated the essential function and molecular mechanism of LINC01494 in glioma progression.
Collapse
Affiliation(s)
- Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun 130031, People's Republic of China
| | - Guozhang Hu
- Department of First-aid Medicine, China-Japan Union Hospital of Jilin University, Changchun 130031, People's Republic of China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130031, People's Republic of China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Naijie Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130031, People's Republic of China
| |
Collapse
|
14
|
He Y, Zisan Z, Lu Z, Zheng L, Zhao J. Bergapten alleviates osteoarthritis by regulating the ANP32A/ATM signaling pathway. FEBS Open Bio 2019; 9:1144-1152. [PMID: 31037830 PMCID: PMC6551499 DOI: 10.1002/2211-5463.12648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease that commonly affects the elderly. Current drug therapies for treating OA may cause adverse side effects, and so there remains a need to develop alternative treatments. Bergapten (BG) is a coumarin phytohormone that is widely found in fruits and has antioxidative and anti‐inflammatory effects. Here, we tested the hypothesis that BG may restrict the progression of OA by examining its effect on OA chondrocytes. We observed that BG significantly ameliorated interleukin (IL)‐1β‐induced expression of inflammatory cytokines and mediators, including interleukin 1 (Il‐1), interleukin 6 (Il‐6), tumor necrosis factor α (Tnf‐α), cyclooxygenase 2 (Cox‐2) and matrix metalloproteinase 13 (Mmp‐13), maintained chondrocyte phenotype, and promoted the secretion of cartilage‐specific extracellular matrix. We provide evidence that BG exerts its anti‐inflammatory effect by activating the ANP32A/ATM signaling pathway, which was recently verified to be associated with OA. In conclusion, these findings indicate that BG may be a potential candidate for treatment of OA.
Collapse
Affiliation(s)
- Yi He
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zeng Zisan
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Jin J, Zhang S, Hu Y, Zhang Y, Guo C, Feng F. SP1 induced lncRNA CASC11 accelerates the glioma tumorigenesis through targeting FOXK1 via sponging miR-498. Biomed Pharmacother 2019; 116:108968. [PMID: 31121483 DOI: 10.1016/j.biopha.2019.108968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023] Open
Abstract
The biological functions of long noncoding RNAs (lncRNAs) in the glioma have gained much attention in recent researches. However, the deepgoing mechanism by which lncRNA regulates the gliomagenesis is still ambiguous. In this work, we found that lncRNA CASC11 was significantly up-regulated in the glioma specimens and cells, and the ectopic overexpression indicated the poor prognosis of glioma patients. CASC11 expression could be activated by the transcription factor SP1. In vivo and vitro, the knockdown of CASC11 impaired the proliferation, migration and tumor growth of glioma cells. In mechanical experiments, the miR-498 was found to target the 3'-UTR of lncRNA CASC11 and FOXK1 mRNA. Taken together, the data suggest the regulation of SP1/CASC11/miR-498/FOXK1 in the gliomagenesis, which might provide a potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Jungong Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, PR China
| | - Shitao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, PR China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Chen Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Fuqiang Feng
- Department of Neurosurgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| |
Collapse
|
16
|
Li Z, Yu Z, Meng X, Zhou S, Xiao S, Li X, Liu S, Yu P. Long noncoding RNA GAS5 impairs the proliferation and invasion of endometrial carcinoma induced by high glucose via targeting miR-222-3p/p27. Am J Transl Res 2019; 11:2413-2421. [PMID: 31105847 PMCID: PMC6511791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be critical functional regulator in the human tumors, while the deepgoing mechanism by which lncRNAs modulates the endometrial carcinoma is still elusive. In this work, we found that lncRNA GAS5 was under-expressed in the endometrial carcinoma tissue specimens, especially these samples with type 2 diabetes mellitus. Besides, the aberrant under-expression of GAS5 was correlated with the advanced tumor stage as well as poor prognosis outcome. In cellular experiments, GAS5 was decreased in the cells exposed to the high glucose. Enforced GAS5 expression repressed the tumor phenotype of endometrial carcinoma cells, including proliferation and invasion. Molecular mechanism study further demonstrated that GAS5 functioned as a sponge for miR-222-3p, abrogating its ability of inhibiting p27 protein expression. In conclusion, these results confirmed the vital regulation of GAS5/miR-222-3p/p27 axis in the endometrial carcinoma tumorigenesis.
Collapse
Affiliation(s)
- Zhenjin Li
- Department of Endocrinology, The Second Hospital of Tianjin Medical UniversityTianjin 300211, China
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and ObstetricsTianjin 300052, China
| | - Xuying Meng
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Saijun Zhou
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Shumin Xiao
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Xin Li
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Shuaihui Liu
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| | - Pei Yu
- Department of Diabetic Nephropathy Hemodialysis, The Metabolic Disease Hospital of Tianjin Medical University, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic DiseaseTianjin 300070, China
| |
Collapse
|
17
|
Frantzi M, Latosinska A, Mischak H. Proteomics in Drug Development: The Dawn of a New Era? Proteomics Clin Appl 2019; 13:e1800087. [DOI: 10.1002/prca.201800087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbHRotenburger Straße 20 D‐30659 Hannover Germany
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbHRotenburger Straße 20 D‐30659 Hannover Germany
- BHF Glasgow Cardiovascular Research CentreUniversity of Glasgow G12 8TA Glasgow UK
| |
Collapse
|
18
|
Li X, Zhang H, Wu X. Long noncoding RNA DLX6-AS1 accelerates the glioma carcinogenesis by competing endogenous sponging miR-197-5p to relieve E2F1. Gene 2018; 686:1-7. [PMID: 30366080 DOI: 10.1016/j.gene.2018.10.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in numerous of human cancer tumorigenesis. Nevertheless, the in-depth molecular mechanism that lncRNAs regulate the gliomagenesis is still ambiguous. In this research, our study invests energy in the biologic roles of lncRNA DLX6-AS1 on the glioma tumorigenesis. Here, we demonstrated that DLX6-AS1 expression was both high-expressed in the glioma cells and tissue, and the overexpression of DLX6-AS1 was clinically correlated with the poor outcome of glioma patients. In the cellular functional assays, silenced DLX6-AS1 expression by siRNAs inhibited the proliferation, invasion and tumor growth in vitro and in vivo, while the enhanced DLX6-AS1 expression by plasmids promotes them. The bioinformatics predictive tools, luciferase reporter assay and correlation analysis found that miR-197-5p could both target the 3'-UTR of DLX6-AS1 as well as E2F1 gene, constructing DLX6-AS1-miR-197-5p-E2F1 axis. Moreover, receiver operating characteristic (ROC) curve analysis revealed that lncRNA DLX6-AS1 has valuable diagnostic value clinical diagnose for the glioma patients (AUC = 0.736). Overall, our finding supports that DLX6-AS1 accelerates the glioma carcinogenesis by competing endogenous sponging miR-197-5p to relieve E2F1, acting as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Huibo Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Xiaofei Wu
- Department of Neurology, Chinese People's Liberation Army, Wuhan General Hospital, Wuhan, Hubei 430070, China.
| |
Collapse
|
19
|
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst) 2018; 69:63-72. [PMID: 30075372 DOI: 10.1016/j.dnarep.2018.07.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kheyrollah
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
20
|
Xie M, Ji Z, Bao Y, Zhu Y, Xu Y, Wang L, Gao S, Liu Z, Tian Z, Meng Q, Shi H, Yu R. PHAP1 promotes glioma cell proliferation by regulating the Akt/p27/stathmin pathway. J Cell Mol Med 2018; 22:3595-3604. [PMID: 29667783 PMCID: PMC6033192 DOI: 10.1111/jcmm.13639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
PHAP1 (Putative HLA‐DR‐associated protein 1), also termed acidic leucine‐rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high‐grade disease. Publicly available data also revealed high levels of PHAP1 were associated with poor prognosis in glioma patients. The functional studies showed that knock‐down of PHAP1 suppressed the proliferation of glioma cells, while overexpression of PHAP1 facilitated it. The iTRAQ proteomic analysis suggested that stathmin might be a potential downstream target of PHAP1. Consistently, PHAP1 knock‐down significantly decreased the expression of stathmin, while overexpression of PHAP1 increased it. Also, the upstream negative regulator, p27, expression levels increased upon PHAP1 knock‐down and decreased when PHAP1 was overexpressed. As a result, the phosphorylated Akt (S473), an upstream regulator of p27, expression levels decreased upon silencing of PHAP1, but elevated after PHAP1 overexpression. Importantly, we demonstrate the p27 down‐regulation, stathmin up‐regulation and cell proliferation acceleration induced by PHAP1 overexpression were dependent on Akt activation. In conclusion, the above results suggest that PHAP1 expression is elevated in glioma patients, which may accelerate the proliferation of glioma cells by regulating the Akt/p27/stathmin pathway.
Collapse
Affiliation(s)
- Manyi Xie
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhe Ji
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Yaxing Bao
- Department of Orthopeadic Surgery, First People's Hospital, Xuzhou, Jiangsu, China
| | - Yufu Zhu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Lei Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiyi Liu
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zilu Tian
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingming Meng
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|