1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Yamamoto H, Ishida Y, Zhang S, Osako M, Nosaka M, Kuninaka Y, Ishigami A, Iwahashi Y, Aragane M, Matsumoto L, Kimura A, Kondo T. Protective roles of thrombomodulin in cisplatin-induced nephrotoxicity through the inhibition of oxidative and endoplasmic reticulum stress. Sci Rep 2024; 14:14004. [PMID: 38890434 PMCID: PMC11189513 DOI: 10.1038/s41598-024-64619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Cisplatin is an effective chemotherapeutic agent widely used for the treatment of various solid tumors. However, cisplatin has an important limitation in its use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Thrombomodulin (TM) is well known not only for its role as a cofactor in the clinically important natural anticoagulation pathway but also for its anti-inflammatory properties. Here, we investigated the effects of TM in cisplatin-induced AKI. In mice intraperitoneally injected with 15 mg/kg cisplatin, TM (10 mg/kg) or PBS was administered intravenously at 24 h after cisplatin injection. TM significantly attenuated cisplatin-induced nephrotoxicity with the suppressed elevation of blood urea nitrogen and serum creatinine, and reduced histological damages. Actually, TM treatment significantly alleviated oxidative stress-induced apoptosis by reducing reactive oxygen species (ROS) levels in cisplatin-treated renal proximal tubular epithelial cells (RPTECs) in vitro. Furthermore, TM clarified cisplatin-induced apoptosis by reducing caspase-3 levels. In addition, TM attenuated the endoplasmic reticulum (ER) stress signaling pathway in both renal tissues and RPTECs to protect the kidneys from cisplatin-induced AKI. These findings suggest that TM is a potential protectant against cisplatin-induced nephrotoxicity through suppressing ROS generation and ER stress in response to cisplatin.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | - Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Miyu Osako
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuya Iwahashi
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Miki Aragane
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Lennon Matsumoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| |
Collapse
|
3
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Xu L, Wang X, Pu P, Li S, Shao Y, Li Y. Ultrasonic Image Features under the Intelligent Algorithm in the Diagnosis of Severe Sepsis Complicated with Renal Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2310014. [PMID: 35991127 PMCID: PMC9388266 DOI: 10.1155/2022/2310014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
This research was aimed at analyzing the diagnosis of severe sepsis complicated with acute kidney injury (AKI) by ultrasonic image information based on the artificial intelligence pulse-coupled neural network (PCNN) algorithm and at improving the diagnostic accuracy and efficiency of clinical severe sepsis complicated with AKI. In this research, 50 patients with sepsis complicated with AKI were collected as the observation group and 50 patients with sepsis as the control group. All patients underwent ultrasound examination. The clinical data of the two groups were collected, and the scores of acute physiology and chronic health assessment (APACHE II) and sequential organ failure assessment (SOFA) were compared. The ultrasonic image information enhancement algorithm based on artificial intelligence PCNN is constructed and simulated and is compared with the maximum between-class variance (OSTU) algorithm and the maximum entropy algorithm. The results showed that the PCNN algorithm was superior to the OSTU algorithm and maximum entropy algorithm in the segmentation results of severe sepsis combined with AKI in terms of regional consistency (UM), regional contrast (CM), and shape measure (SM). The acute physiology and chronic health evaluation (APACHE II) and sequential organ failure assessment (SOFA) scores in the observation group were substantially higher than those in the control group (P < 0.05). The interlobular artery resistance index (RI) in the observation group was substantially higher than that in the control group (P < 0.05). Moreover, the mean transit time (mTT) in the observation group was significantly higher than that in the control group (4.85 ± 1.27 vs. 3.42 ± 1.04), and the perfusion index (PI) was significantly lower than that in the control group (134.46 ± 17.29 vs. 168.37 ± 19.28), with statistical significance (P < 0.05). In summary, it can substantially increase ultrasonic image information based on the artificial intelligence PCNN algorithm. The RI, mTT, and PI of the renal interlobular artery level in ultrasound images can be used as indexes for the diagnosis of severe sepsis complicated with AKI.
Collapse
Affiliation(s)
- Leiming Xu
- Department of Emergency Medicine, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| | - Xin Wang
- Department of Intensive Care Unit, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| | - Pu Pu
- Department of Intensive Care Unit, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| | - Suhui Li
- Department of Emergency Medicine, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| | - Yongzheng Shao
- Department of Intensive Care Unit, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| | - Yong Li
- Department of Intensive Care Unit, Binhai County People's Hospital, Binhai, 224500 Jiangsu, China
| |
Collapse
|
5
|
Wei W, Zhao Y, Zhang Y, Jin H, Shou S. The role of IL-10 in kidney disease. Int Immunopharmacol 2022; 108:108917. [DOI: 10.1016/j.intimp.2022.108917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023]
|
6
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Tomşa AM, Răchişan AL, Pandrea SL, Benea A, Uifălean A, Parvu AE, Junie LM. Accelerated lipid peroxidation in a rat model of gentamicin nephrotoxicity. Exp Ther Med 2021; 22:1218. [PMID: 34584563 DOI: 10.3892/etm.2021.10652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney disease represents a burden for the health care system worldwide. As the prevalence continues to rise, discovering new biomarkers of early kidney damage has become crucial. Oxidative stress (OS) represents one of the main factors involved in the early stages of many syndromes leading to kidney damage. Therefore, it must be studied in detail. To date, many studies have focused on OS in advanced stages of acute kidney injury (AKI), with great success. The aim of the present study was to ascertain whether even mild renal function impairment can be linked to specific systemic markers of OS and systemic antioxidants in order to pinpoint certain biomarkers for early kidney damage. We used male rats (Rattus norvegicus) in which we induced kidney damage by injecting gentamicin for 7 days. Blood was collected 24 h after the last dose of gentamicin. Urea, creatinine, 3-nitrotyrosine (3-NT), nitric oxide (NO), malondialdehyde (MDA), thiols (TS), total oxidative stress (TOS), and interferon-γ (IFN-γ) were determined. In addition, for the antioxidant status we measured total antioxidant capacity (TAC) and interleukin-10 (IL-10). Our results demonstrated that the rats had mild renal impairment consistent with a pre-AKI stage due to the nephrotoxic effect of gentamicin. However, TOS, MDA and NO were significantly higher in the gentamicin group compared to the control group. In addition, TAC was higher in the control group. Hence, OS markers reach higher levels and may potentially be used as markers of kidney damage even in cases of mild renal function impairment.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomşa
- Department 9-Mother and Child, Second Clinic of Pediatrics, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania.,Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Liana Răchişan
- Department 9-Mother and Child, Second Clinic of Pediatrics, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Stanca Lucia Pandrea
- Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Laboratory Department, 'Prof. Dr. Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Andreea Benea
- Laboratory Department, 'Prof. Dr. Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Pathophysiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Elena Parvu
- Department of Pathophysiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lia Monica Junie
- Department of Microbiology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
TNF-α and IFN-γ Participate in Improving the Immunoregulatory Capacity of Mesenchymal Stem/Stromal Cells: Importance of Cell-Cell Contact and Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179531. [PMID: 34502453 PMCID: PMC8431422 DOI: 10.3390/ijms22179531] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have an immunoregulatory capacity and have been used in different clinical protocols requiring control of the immune response. However, variable results have been obtained, mainly due to the effect of the microenvironment on the induction, increase, and maintenance of MSC immunoregulatory mechanisms. In addition, the importance of cell–cell contact for MSCs to efficiently modulate the immune response has recently been highlighted. Because these interactions would be difficult to achieve in the physiological context, the release of extracellular vesicles (EVs) and their participation as intermediaries of communication between MSCs and immune cells becomes relevant. Therefore, this article focuses on analyzing immunoregulatory mechanisms mediated by cell contact, highlighting the importance of intercellular adhesion molecule-1 (ICAM-1) and the participation of EVs. Moreover, the effects of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), the main cytokines involved in MSC activation, are examined. These cytokines, when used at the appropriate concentrations and times, would promote increases in the expression of immunoregulatory molecules in the cell and allow the acquisition of EVs enriched with these molecules. The establishment of certain in vitro activation guidelines will facilitate the design of conditioning protocols to obtain functional MSCs or EVs in different pathophysiological conditions.
Collapse
|
9
|
Corrêa RR, Juncosa EM, Masereeuw R, Lindoso RS. Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives. Int J Mol Sci 2021; 22:ijms22115787. [PMID: 34071399 PMCID: PMC8198688 DOI: 10.3390/ijms22115787] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been described as important mediators of cell communication, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidney’s complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVs’ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications.
Collapse
Affiliation(s)
- Raphael Rodrigues Corrêa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Estela Mancheño Juncosa
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| |
Collapse
|
10
|
Al-Azab M, Walana W, Wei J, Li W, Tang Y, Wei X, Almoiliqy M, Shopit A, Abbas EE, Adlat S, Awsh M, Li X, Wang B. TL1A/TNFR2 Axis Enhances Immunoregulatory Effects of Bone Marrow Derived Mesenchymal Stem Cell by Indian Hedgehog Signaling Pathway. Int J Stem Cells 2021; 14:58-73. [PMID: 33122466 PMCID: PMC7904531 DOI: 10.15283/ijsc19121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives The immunomodulatory potential of mesenchymal stem cells (MSCs) can be regulated by a variety of molecules, especially cytokines. The inflammatory cytokine, TNF-like ligand 1A (TL1A), has been reported as an inflammation stimulator in-multiple autoimmune diseases. Here, we studied the effects of TL1A/TNF-receptor 2 (TNFR2) pathway on the therapeutic potency of bone marrow-derived MSCs (BMSCs). Methods and Results BMSCs, fibroblast-like synoviocytes (FLSs), and H9 and jurkat human T lymphocytes were used in this study. BMSCs paracrine activities, differentiation, proliferation, and migration were investigated after stimulation with TL1A, and intervened with anti-TNFR2. Additionally, the effects of TL1A on BMSCs therapeutic potency were evaluated by treating RA-FLSs, and H9 and jurkat T cells with TL1A-stimulated BMSCs conditioned medium (CM). Indian hedgehog (IHH) involvement was determined by gene silencing and treatment by recombinant IHH (rIHH). TL1A induced BMSCs stemness-related genes, COX-2, IL-6, IDO, TGF-β and HGF through TNFR2. Also, TL1A corrected biased differentiation and increased proliferation, and migration through TNFR2. Meanwhile, CM of TL1A-stimulated BMSCs decreased the inflammatory markers of RA-FLSs and T cells. Moreover, TL1A-stimulated BMSCs experienced IHH up-regulation coupled with NF-κB and STAT3 signaling up-regulation, while p53 and oxidative stress were down-regulated. Furthermore, treatment of BMSCs by rIHH increased their anti-inflammatory effects. More importantly, knockdown of IHH decreased the ability of TL1A-stimulated BMSCs to alleviating the inflammation in RA-FLSs and T cells. Conclusions This study reports the effects of TL1A/TNFR2 pathway on the biological behaviors and therapeutic potency of BMSCs through IHH. These findings could introduce novel procedures to increase the stemness of MSCs in cellular therapy.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xiaoqing Wei
- Molecular Medicine Laboratory, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Abdullah Shopit
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Elrayah Eltahir Abbas
- Microbiology Laboratory, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, China
| | - Mohammed Awsh
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
11
|
Rosenblatt RB, Frank JA, Burks SR. Cytosolic Ca 2+ transients during pulsed focused ultrasound generate reactive oxygen species and cause DNA damage in tumor cells. Am J Cancer Res 2021; 11:602-613. [PMID: 33391495 PMCID: PMC7738866 DOI: 10.7150/thno.48353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces from non-ablative pulsed focused ultrasound (pFUS) generate pro-inflammatory tumor microenvironments (TME), marked by increased cytokines, chemokines, and trophic factors, as well as immune cell infiltration and reduced tumor growth. pFUS also causes DNA damage within tumors, which is a potent activator of immunity and could contribute to changes in the TME. This study investigated mechanisms behind the mechanotransductive effects of pFUS causing DNA damage in several tumor cell types. Methods: 4T1 (murine breast tumor), B16 (murine melanoma), C6 (rat glioma), or MDA-MB-231 (human breast tumor) cells were sonicated in vitro (1.1MHz; 6MPa PNP; 10ms pulses; 10% duty cycle; 300 pulses). DNA damage was detected by TUNEL, apoptosis was measured by immunocytochemistry for cleaved caspase-3. Calcium, superoxide, and H2O2 were detected by fluorescent indicators and modulated by BAPTA-AM, mtTEMPOL, or Trolox, respectively. Results: pFUS increased TUNEL reactivity (range = 1.6-2.7-fold) in all cell types except C6 and did not induce apoptosis in any cell line. All lines displayed cytosolic Ca2+ transients during sonication. pFUS increased superoxide (range = 1.6-2.0-fold) and H2O2 (range = 2.3-2.8-fold) in all cell types except C6. BAPTA-AM blocked increased TUNEL reactivity, superoxide and H2O2 formation, while Trolox also blocked increased TUNEL reactivity increased after pFUS. mtTEMPOL allowed H2O2 formation and did not block increased TUNEL reactivity after pFUS. Unsonicated C6 cells had higher baseline concentrations of cytosolic Ca2+, superoxide, and H2O2, which were not associated with greater baseline TUNEL reactivity than the other cell lines. Conclusions: Mechanotransduction of pFUS directly induces DNA damage in tumor cells by cytosolic Ca2+ transients causing formation of superoxide and subsequently, H2O2. These results further suggest potential clinical utility for pFUS. However, the lack of pFUS-induced DNA damage in C6 cells demonstrates a range of potential tumor responses that may arise from physiological differences such as Ca2+ or redox homeostasis.
Collapse
|
12
|
Jang KW, Tu TW, Rosenblatt RB, Burks SR, Frank JA. MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium. J Cell Mol Med 2020; 24:13278-13288. [PMID: 33067927 PMCID: PMC7701528 DOI: 10.1111/jcmm.15944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert B Rosenblatt
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Ullah M, Liu DD, Rai S, Razavi M, Concepcion W, Thakor AS. Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury. Stem Cell Res Ther 2020; 11:398. [PMID: 32928310 PMCID: PMC7490886 DOI: 10.1186/s13287-020-01922-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by rapid failure of renal function and has no curative therapies. Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to carry therapeutic factors, which have shown promise in regenerative medicine applications, including AKI. However, there remains an unmet need to optimize their therapeutic effect. One potential avenue of optimization lies in pulsed focused ultrasound (pFUS), where tissues-of-interest are treated with sound waves. pFUS has been shown to enhance MSC therapy via increased cell homing, but its effects on cell-free EV therapy remain largely unexplored. METHODS We combine pFUS pretreatment of the kidney with MSC-derived EV therapy in a mouse model of cisplatin-induced AKI. RESULTS EVs significantly improved kidney function, reduced injury markers, mediated increased proliferation, and reduced inflammation and apoptosis. While pFUS did not enhance EV homing to the kidney, the combined treatment resulted in a superior therapeutic effect compared to either treatment alone. We identified several molecular mechanisms underlying this synergistic therapeutic effect, including upregulation of proliferative signaling (MAPK/ERK, PI3K/Akt) and regenerative pathways (eNOS, SIRT3), as well as suppression of inflammation. CONCLUSION Taken together, pFUS may be a strategy for enhancing the therapeutic efficacy of MSC-derived EV treatment for the treatment of AKI.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Sravanthi Rai
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
14
|
Lorsung RM, Rosenblatt RB, Cohen G, Frank JA, Burks SR. Acoustic Radiation or Cavitation Forces From Therapeutic Ultrasound Generate Prostaglandins and Increase Mesenchymal Stromal Cell Homing to Murine Muscle. Front Bioeng Biotechnol 2020; 8:870. [PMID: 32850728 PMCID: PMC7399074 DOI: 10.3389/fbioe.2020.00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Non-ablative ultrasound (US)-based techniques to improve targeted tropism of systemically infused cell therapies, particularly mesenchymal stromal cell (MSC), have gained attention in recent years. Mechanotransduction following targeted US sonications have been shown to modulate tissue microenvironments by upregulating cytokines, chemokines, and trophic factors in addition to vascular cell adhesion molecules (CAM) that are necessary to promote tropism of MSC. While numerous US treatment parameters have demonstrated increased MSC homing, it remains unclear how the different mechanical US forces [i.e., acoustic radiation forces (ARF) or cavitation forces] influence tissue microenvironments. This study sonicated murine muscle tissue with pulsed focused ultrasound (pFUS) at 0.5 or 1.15 MHz each over a range of US intensities. Following sonication, tissue was assayed for the prostaglandins (PG) PGH2 and PGE2 as indicators of microenvironmental changes that would support MSC tropism. PGH2 and PGE2 levels were correlated to physical pFUS parameters and acoustic emissions measured by hydrophone. While ARF (pFUS with absence of cavitation signatures) was sufficient to increase PGH2 and PGE2, non-linear curve fitting revealed a frequency-independent relationship between prostaglandin production and mechanical index (MI), which accounts for increased cavitation probabilities of lower frequencies. The prostaglandin data suggested molecular changes in muscle would be particularly sensitive to cavitation. Therefore, low-intensity pulsed ultrasound (LIPUS) at 1 MHz was administered with low ARF (MI = 0.2) in combination with intravenous (IV) infusions of microbubble (MB) contrast agents. This combination upregulated prostaglandins and CAM without ultrasound-mediated microbubble destruction and ultimately promoted tropism of IV-infused MSC. This study revealed that accentuating non-destructive MB cavitation by US using parameters similar to diagnostic US contrast imaging increased MSC homing. Such approaches are particularly attractive to overcome clinical translation barriers of many still-experimental US parameters used in previous stem cell tropism studies.
Collapse
Affiliation(s)
- Rebecca M Lorsung
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Robert B Rosenblatt
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Gadi Cohen
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Joseph A Frank
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States.,Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, United States
| | - Scott R Burks
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| |
Collapse
|
15
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
16
|
Liu D, Cheng F, Pan S, Liu Z. Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther 2020; 11:249. [PMID: 32586408 PMCID: PMC7318741 DOI: 10.1186/s13287-020-01751-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of kidney diseases is emerging as a public health problem. Stem cells (SCs), currently considered as a promising tool for therapeutic application, have aroused considerable interest and expectations. With self-renewal capabilities and great potential for proliferation and differentiation, stem cell therapy opens new avenues for the development of renal function and structural repair in kidney diseases. Mounting evidence suggests that stem cells exert a therapeutic effect mainly by replacing damaged tissues and paracrine pathways. The benefits of various types of SCs in acute kidney disease and chronic kidney disease have been demonstrated in preclinical studies, and preliminary results of clinical trials present its safety and tolerability. This review will focus on the stem cell-based therapy approaches for the treatment of kidney diseases, including various cell sources used, possible mechanisms involved, and outcomes that are generated so far, along with prospects and challenges in clinical application.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
17
|
Ullah M, Liu DD, Rai S, Concepcion W, Thakor AS. HSP70-Mediated NLRP3 Inflammasome Suppression Underlies Reversal of Acute Kidney Injury Following Extracellular Vesicle and Focused Ultrasound Combination Therapy. Int J Mol Sci 2020; 21:ijms21114085. [PMID: 32521623 PMCID: PMC7312940 DOI: 10.3390/ijms21114085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is the abrupt loss of renal function, for which only supportive therapies exist. Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have been shown to be therapeutically effective in treating AKI by spurring endogenous cell proliferation and survival while suppressing inflammation. Pre-treating kidneys with pulsed focused ultrasound (pFUS) has also been shown to enhance MSC therapy for AKI, but its role in MSC-derived EV therapy remains unexplored. Using a mouse model of cisplatin-induced AKI, we show that combination therapy with pFUS and EVs restores physiological and molecular markers of kidney function, more so than either alone. Both pFUS and EVs downregulate heat shock protein 70 (HSP70), the NLRP3 inflammasome, and its downstream pro-inflammatory cytokines IL-1β and IL-18, all of which are highly upregulated in AKI. In vitro knockdown studies suggest that HSP70 is a positive regulator of the NLRP3 inflammasome. Our study therefore demonstrates the ability of pFUS to enhance EV therapy for AKI and provides further mechanistic understanding of their anti-inflammatory and regenerative effects.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; (M.U.); (D.D.L.); (S.R.)
| | - Daniel D. Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; (M.U.); (D.D.L.); (S.R.)
| | - Sravanthi Rai
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; (M.U.); (D.D.L.); (S.R.)
| | - Waldo Concepcion
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA;
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; (M.U.); (D.D.L.); (S.R.)
- Correspondence: ; Tel.: +1-650-723-8061
| |
Collapse
|
18
|
Ullah M, Liu DD, Rai S, Dadhania A, Jonnakuti S, Concepcion W, Thakor AS. Reversing Acute Kidney Injury Using Pulsed Focused Ultrasound and MSC Therapy: A Role for HSP-Mediated PI3K/AKT Signaling. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:683-694. [PMID: 32346546 PMCID: PMC7177168 DOI: 10.1016/j.omtm.2020.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is characterized by a sudden failure of renal function, but despite increasing worldwide prevalence, current treatments are largely supportive, with no curative therapies. Mesenchymal stromal cell (MSC) therapy has been shown to have a promising regenerative effect in AKI but is limited by the ability of cells to home to damaged tissue. Pulsed focused ultrasound (pFUS), wherein target tissues are sonicated by short bursts of sound waves, has been reported to enhance MSC homing by upregulating local homing signals. However, the exact mechanism by which pFUS enhances MSC therapy remains insufficiently explored. In this study, we studied the effect of bone marrow-derived MSCs (BM-MSCs), in conjunction with pFUS, in a mouse model of cisplatin-induced AKI. Here, BM-MSCs improved kidney function, reduced histological markers of kidney injury, decreased inflammation and apoptosis, and promoted cellular proliferation. Surprisingly, whereas pFUS did not upregulate local cytokine expression or improve BM-MSC homing, it did potentiate the effect of MSC treatment in AKI. Further analysis linked this effect to the upregulation of heat shock protein (HSP)20/HSP40 and subsequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In summary, our results suggest that pFUS and BM-MSCs have independent as well as synergistic therapeutic effects in the context of AKI.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Sravanthi Rai
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Arya Dadhania
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Sriya Jonnakuti
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
19
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell‐based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano‐transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self‐renewal and differentiation, and to tissues‐of‐interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC‐based therapies, including low‐intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC‐based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Waldo Concepcion
- Department of Surgery, Stanford University, Palo Alto, California
| | - Jeremy J Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California
| |
Collapse
|
20
|
Aydin O, Lorsung R, Chandran P, Cohen G, Burks SR, Frank JA. The Proteomic Effects of Pulsed Focused Ultrasound on Tumor Microenvironments of Murine Melanoma and Breast Cancer Models. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3232-3245. [PMID: 31530419 PMCID: PMC7456468 DOI: 10.1016/j.ultrasmedbio.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
Non-ablative pulsed focused ultrasound (pFUS) targets non-thermal forces that activate local molecular and cellular immune responses. Optimal parameters to stimulate immunotherapeutic tumor microenvironments (TME) and responses in different tumor types remain uninvestigated. Flank B16 murine melanoma and 4T1 breast tumors received 1 MHz pFUS at 1-8 MPa peak negative pressures (PNP) and were analyzed 24 hr post-sonication. Necrosis or hemorrhage were unaltered in both tumors, but pFUS induced DNA strand breaks in tumor cells at PNP ≥6 MPa. pFUS at >4 MPa suppressed anti-inflammatory cytokines in B16 tumors. pFUS to 4T1 tumors decreased anti-inflammatory cytokines and increased pro-inflammatory cytokines and cell adhesion molecules. pFUS at 6 MPa increased calreticulin and alterations in check-point proteins along with tumoral and splenic immune cell changes that could be consistent with a shift towards an anti-TME. pFUS-induced TME alterations shows promise in generating anti-tumor immune responses, but non-uniform responses between tumor types require additional investigation to assess pFUS as a suitable anti-tumor therapy.
Collapse
Affiliation(s)
- Omer Aydin
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Erciyes University, School of Engineering, Department of Biomedical Engineering, 38039, Talas, Kayseri, Turkey
- To whom correspondence may be addressed. ;
| | - Rebecca Lorsung
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Gadi Cohen
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Scott R. Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Joseph A. Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed. ;
| |
Collapse
|
21
|
Burks SR, Lorsung RM, Nagle ME, Tu TW, Frank JA. Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 2019; 9:5517-5531. [PMID: 31534500 PMCID: PMC6735402 DOI: 10.7150/thno.33876] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Pulsed focused ultrasound (pFUS) technology is being developed for clinical neuro/immune modulation and regenerative medicine. Biological signal transduction of pFUS forces can require mechanosensitive or voltage-gated plasma membrane ion channels. Previous studies suggested pFUS is capable of activating either channel type, but their mechanistic relationship remains ambiguous. We demonstrated pFUS bioeffects increased mesenchymal stem cell tropism (MSC) by altering molecular microenvironments through cyclooxygenase-2 (COX2)-dependent pathways. This study explored specific relationships between mechanosensitive and voltage-gated Ca2+ channels (VGCC) to initiate pFUS bioeffects that increase stem cell tropism. Methods: Murine kidneys and hamstring were given pFUS (1.15 or 1.125 MHz; 4MPa peak rarefactional pressure) under ultrasound or magnetic resonance imaging guidance. Cavitation and tissue displacement were measure by hydrophone and ultrasound radiofrequency data, respectively. Elastic modeling was performed from displacement measurements. COX2 expression and MSC tropism were evaluated in the presence of pharmacological ion channel inhibitors or in transient-receptor-potential-channel-1 (TRPC1)-deficient mice. Immunohistochemistry and co-immunoprecipitation examined physical channel relationships. Fluorescent ionophore imaging of cultured C2C12 muscle cells or TCMK1 kidney cells probed physiological interactions. Results: pFUS induced tissue deformations resulting in kPa-scale forces suggesting mechanical activation of pFUS-induced bioeffects. Inhibiting VGCC or TRPC1 in vivo blocked pFUS-induced COX2 upregulation and MSC tropism to kidneys and muscle. A TRPC1/VGCC complex was observed in plasma membranes. VGCC or TRPC1 suppression blocked pFUS-induced Ca2+ transients in TCMK1 and C2C12 cells. Additionally, Ca2+ transients were blocked by reducing transmembrane Na+ potentials and observed Na+ transients were diminished by genetic TRPC1 suppression. Conclusion: This study suggests that pFUS acoustic radiation forces mechanically activate a Na+-containing TRPC1 current upstream of VGCC rather than directly opening VGCC. The electrogenic function of TRPC1 provides potential mechanistic insight into other pFUS techniques for physiological modulation and optimization strategies for clinical implementation.
Collapse
|
22
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
23
|
Burks SR, Nagle ME, Bresler MN, Kim SJ, Star RA, Frank JA. Mesenchymal stromal cell potency to treat acute kidney injury increased by ultrasound-activated interferon-γ/interleukin-10 axis. J Cell Mol Med 2018; 22:6015-6025. [PMID: 30216653 PMCID: PMC6237567 DOI: 10.1111/jcmm.13874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapies combined with renal pulsed focused ultrasound (pFUS) pretreatment increase MSC homing and improve cisplatin-induced acute kidney injury (AKI) better than MSC alone. However, mechanisms underlying improved outcomes remain unknown. We hypothesize pFUS up-regulates renal interferon-γ (IFNγ) and stimulates MSC to produce interleukin-10 (IL-10) after migrating to kidneys. To demonstrate initially, MSC cultured with IFNγ up-regulated IL-10. More MSC-derived IL-10 was detected in kidneys when IFNγ-stimulated MSC were infused and they improved AKI better than unstimulated MSC. Next, IFNγ-knockout mice with AKI received pFUS+MSC, but MSC-derived IL-10 expression and AKI were similar to using MSC alone. AKI in wild-type mice receiving pFUS and IL-10-deficient MSC was also unimproved compared to administering IL-10-deficient MSC alone. Indoleamine 2,3-dioxygenase (IDO), an anti-inflammatory enzyme up-regulated in MSC by IFNγ, was up-regulated during AKI, but was not further elevated in MSC from pFUS-treated kidneys, suggesting that IDO is not involved in improved AKI healing by pFUS+MSC. These data suggest IFNγ is up-regulated by pFUS and after i.v.-infused MSC home to pFUS-treated kidneys, IFNγ stimulates additional IL-10 production by MSC to improve AKI. Analogous mechanisms of ultrasound-treated tissue microenvironments stimulating therapeutic MSC may exist in other pathologies where adjuvant ultrasound techniques are successful.
Collapse
Affiliation(s)
- Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Matthew E Nagle
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Michele N Bresler
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland.,National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland
| |
Collapse
|