1
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
2
|
Huldani H, Malviya J, Rodrigues P, Hjazi A, Deorari MM, Al-Hetty HRAK, Qasim QA, Alasheqi MQ, Ihsan A. Discovering the strength of immunometabolism in cancer therapy: Employing metabolic pathways to enhance immune responses. Cell Biochem Funct 2024; 42:e3934. [PMID: 38379261 DOI: 10.1002/cbf.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Immunometabolism, which studies cellular metabolism and immune cell function, is a possible cancer treatment. Metabolic pathways regulate immune cell activation, differentiation, and effector functions, crucial to tumor identification and elimination. Immune evasion and tumor growth can result from tumor microenvironment metabolic dysregulation. These metabolic pathways can boost antitumor immunity. This overview discusses immune cell metabolism, including glycolysis, oxidative phosphorylation, amino acid, and lipid metabolism. Amino acid and lipid metabolic manipulations may improve immune cell activity and antitumor immunity. Combination therapy using immunometabolism-based strategies may enhance therapeutic efficacy. The complexity of the metabolic network, biomarker development, challenges, and future approaches are all covered, along with a summary of case studies demonstrating the effectiveness of immunometabolism-based therapy. Metabolomics, stable isotope tracing, single-cell analysis, and computational modeling are also reviewed for immunometabolism research. Personalized and combination treatments are considered. This review adds to immunometabolism expertise and sheds light on metabolic treatments' ability to boost cancer treatment immunological response. Also, in this review, we discussed the immune response in cancer treatment and altering metabolic pathways to increase the immune response against malignancies.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Jitendra Malviya
- Institute of Advance Bioinformatics, Bhopal, Madhya Pradesh, India
| | - Paul Rodrigues
- Department of Computer Engineering, King Khalid University, Al-Faraa, Asir-Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, Prince Sattam bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
| | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Ali Ihsan
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Xiao BJ, Sima XX, Chen G, Gulizeba H, Zhou T, Huang Y. Predictive and prognostic role of early apolipoprotein A-I alteration in recurrent or metastatic nasopharyngeal carcinoma patients treated with anti-PD-1 therapy. Cancer Med 2023; 12:16918-16928. [PMID: 37409613 PMCID: PMC10501269 DOI: 10.1002/cam4.6321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The primary objective of this study was to evaluate the predictive and prognostic value of serum lipids in recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients received anti-PD-1 therapy. MATERIALS AND METHODS Patients treated with anti-PD-1 therapy (monotherapy or combined with chemotherapy) from two clinical trials (CAPTAIN and CAPTAIN-1st study) were included. Serum lipids were measured at baseline and after two cycles of treatment. We examined the impact of both baseline and post-treatment lipid levels on objective response rate (ORR), progression-free survival (PFS), and duration of response (DOR). RESULTS Of 106 patients, 89 patients (84%) were male. The patients' median age was 49 years. An early elevated (after two cycles of treatment) cholesterol (CHO), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A-I (ApoA-I), and apolipoprotein B (ApoB) were significantly associated with better ORR. Moreover, early elevated CHO, LDL-C, and ApoA-I were also positively correlated with DOR and PFS. Further multivariate analysis showed that only early change in ApoA-I could independently predict PFS (HR, 2.27; 95% CI, 1.11-4.61; p = 0.034). The median PFS for patients with early elevated and reduced ApoA-I was 11.43 and 1.89 months, respectively. However, baseline lipids levels do not play a significant role in the prognosis and prediction of patients with anti-PD-1 treatment. CONCLUSION Collectively, an early elevation in ApoA-I was correlated with better outcomes for anti-PD-1 therapy in patients with R/M NPC, suggesting that clinicians should consider the early alteration of ApoA-I as a useful marker in treating R/M NPC patients with anti-PD-1.
Collapse
Affiliation(s)
- Bi Jing Xiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiao Xian Sima
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gang Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Haimiti Gulizeba
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
Xu J, Wu X, Chen J, Cheng Y, Zhang X. A TP53-associated metabolic gene signature for the prediction of overall survival and therapeutic responses in hepatocellular carcinoma. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Scharsack JP, Franke F. Temperature effects on teleost immunity in the light of climate change. JOURNAL OF FISH BIOLOGY 2022; 101:780-796. [PMID: 35833710 DOI: 10.1111/jfb.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Temperature is an important environmental modulator of teleost immune activity. Susceptibility of teleosts to temperature variation depends on the species-specific adaptive temperature range, and the activity of the teleost immune system is generally temperature-dependent. Similar to many physiological and metabolic traits of ectotherms, temperature modulates the activity of immune traits. At low temperatures, acquired immunity of many teleost species is down-modulated, and their immuno-competence mainly depends on innate immunity. At intermediate temperatures, both innate and acquired immunity are fully active and provide optimal protection, including long-lasting immunological memory. When temperatures increase and reach the upper permissive range, teleost immunity is compromised. Moreover, temperature shifts may have negative effects on teleost immune functions, in particular if shifts occur rapidly with high amplitudes. On the contrary, short-term temperature increase may help teleost immunity to fight against pathogens transiently. A major challenge to teleosts therefore is to maintain immuno-competence throughout the temperature range they are exposed to. Climate change coincides with rising temperatures, and more frequent and more extreme temperature shifts. Both are likely to influence the immuno-competence of teleosts. Nonetheless, teleosts exist in habitats that differ substantially in temperature, ranging from below zero in the Arctic's to above 40°C in warm springs, illustrating their enormous potential to adapt to different temperature regimes. The present review seeks to discuss how changes in temperature variation, induced by climate change, might influence teleost immunity.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department for Fish Diseases, Thuenen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Frederik Franke
- Bavarian State Institute of Forestry, Department of Biodiversity, Nature Protection & Wildlife Management, Freising, Germany
| |
Collapse
|
6
|
Marelli G, Morina N, Portale F, Pandini M, Iovino M, Di Conza G, Ho PC, Di Mitri D. Lipid-loaded macrophages as new therapeutic target in cancer. J Immunother Cancer 2022; 10:jitc-2022-004584. [PMID: 35798535 PMCID: PMC9263925 DOI: 10.1136/jitc-2022-004584] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophages are main players of the innate immune system. They show great heterogeneity and play diverse functions that include support to development, sustenance of tissue homeostasis and defense against infections. Dysfunctional macrophages have been described in multiple pathologies including cancer. Indeed tumor-associated macrophages (TAMs) are abundant in most tumors and sustain cancer growth, promote invasion and mediate immune evasion. Importantly, lipid metabolism influences macrophage activation and lipid accumulation confers pathogenic features on macrophages. Notably, a subset of lipid-loaded macrophages has been recently identified in many tumor types. Lipid-loaded TAMs support tumor growth and progression and exert immune-suppressive activities. In this review, we describe the role of lipid metabolism in macrophage activation in physiology and pathology and we discuss the impact of lipid accumulation in macrophages in the context of cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Nicolò Morina
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Federica Portale
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Marta Pandini
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Marta Iovino
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Giusy Di Conza
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Diletta Di Mitri
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy .,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| |
Collapse
|
7
|
Li L, Gao H, Wang D, Jiang H, Wang H, Yu J, Jiang X, Huang C. Metabolism-Relevant Molecular Classification Identifies Tumor Immune Microenvironment Characterization and Immunotherapeutic Effect in Cervical Cancer. Front Mol Biosci 2021; 8:624951. [PMID: 34277697 PMCID: PMC8280349 DOI: 10.3389/fmolb.2021.624951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer (CESC) is a gynecologic malignant tumor associated with high incidence and mortality rates because of its distinctive management complexity. Herein, we characterized the molecular features of CESC based on the metabolic gene expression profile by establishing a novel classification system and a scoring system termed as METAscore. Integrative analysis was performed on human CESC samples from TCGA dataset. Unsupervised clustering of RNA sequencing data on 2,752 formerly described metabolic genes identified three METAclusters. These METAclusters for overall survival time, immune characteristics, metabolic features, transcriptome features, and immunotherapeutic effectiveness existed distinct differences. Then we analyzed 207 DEGs among the three METAclusters and as well identified three geneclusters. Correspondingly, these three geneclusters also differently expressed among the aforementioned features, supporting the reliability of the metabolism-relevant molecular classification. Finally METAscore was constructed which emerged as an independent prognostic biomarker, related to CESC transcriptome features, metabolic features, immune characteristics, and linked to the sensitivity of immunotherapy for individual patient. These findings depicted a new classification and a scoring system in CESC based on the metabolic pattern, thereby furthering the understanding of CESC genetic signatures and aiding in the prediction of the effectiveness to anticancer immunotherapies.
Collapse
Affiliation(s)
- Luyi Li
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China.,The 2 Afflicated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Gao
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Danhan Wang
- The 2 Afflicated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Jiang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Hongzhu Wang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Jiajian Yu
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Xin Jiang
- Prenatal Diagnosis Center of NanFang Hospital, The Southern Medical University, Guangzhou, China
| | - Changjiang Huang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021; 41:803-829. [PMID: 34165252 PMCID: PMC8441060 DOI: 10.1002/cac2.12178] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer greatly affects the quality of life of humans worldwide and the number of patients suffering from it is continuously increasing. Over the last century, numerous treatments have been developed to improve the survival of cancer patients but substantial progress still needs to be made before cancer can be truly cured. In recent years, antitumor immunity has become the most debated topic in cancer research and the booming development of immunotherapy has led to a new epoch in cancer therapy. In this review, we describe the relationships between tumors and the immune system, and the rise of immunotherapy. Then, we summarize the characteristics of tumor‐associated immunity and immunotherapeutic strategies with various molecular mechanisms by showing the typical immune molecules whose antibodies are broadly used in the clinic and those that are still under investigation. We also discuss important elements from individual cells to the whole human body, including cellular mutations and modulation, metabolic reprogramming, the microbiome, and the immune contexture. In addition, we also present new observations and technical advancements of both diagnostic and therapeutic methods aimed at cancer immunotherapy. Lastly, we discuss the controversies and challenges that negatively impact patient outcomes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Hao-Xiang Wu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
9
|
Increased serum cholesterol and long-chain fatty acid levels are associated with the efficacy of nivolumab in patients with non-small cell lung cancer. Cancer Immunol Immunother 2021; 71:203-217. [PMID: 34091744 PMCID: PMC8738455 DOI: 10.1007/s00262-021-02979-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2022]
Abstract
Background Lipids have immunomodulatory functions and the potential to affect cancer immunity. Methods The associations of pretreatment serum cholesterol and long-chain fatty acids with the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated in 148 patients with non-small cell lung cancer who received nivolumab. Results When each lipid was separately evaluated, increased low-density lipoprotein (LDL)-cholesterol (P < 0.001), high-density lipoprotein (HDL)-cholesterol (P = 0.014), total cholesterol (P = 0.007), lauric acid (P = 0.015), myristic acid (P = 0.022), myristoleic acid (P = 0.035), stearic acid (P = 0.028), linoleic acid (P = 0.005), arachidic acid (P = 0.027), eicosadienoic acid (P = 0.017), dihomo-γ-linolenic acid (P = 0.036), and behenic acid levels (P = 0.032) were associated with longer PFS independent of programmed death ligand 1 (PD-L1) expression. Meanwhile, increased LDL-cholesterol (P < 0.001), HDL-cholesterol (P = 0.009), total cholesterol (P = 0.036), linoleic acid (P = 0.014), and lignoceric acid levels (P = 0.028) were associated with longer OS independent of PD-L1 expression. When multiple lipids were evaluated simultaneously, LDL-cholesterol (P = 0.003), HDL-cholesterol (P = 0.036), and lauric acid (P = 0.036) were independently predictive of PFS, and LDL-cholesterol (P = 0.008) and HDL-cholesterol (P = 0.031) were predictive of OS. ORR was not associated with any serum lipid. Conclusions Based on the association of prolonged survival in patients with increased serum cholesterol and long-chain fatty acid levels, serum lipid levels may be useful for predicting the efficacy of immune checkpoint inhibitor therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02979-4.
Collapse
|
10
|
Dai X, Jiang W, Ma L, Sun J, Yan X, Qian J, Wang Y, Shi Y, Ni S, Yao N. A metabolism-related gene signature for predicting the prognosis and therapeutic responses in patients with hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:500. [PMID: 33850897 PMCID: PMC8039687 DOI: 10.21037/atm-21-927] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) often has an insidious onset and rapid progression. Often, when the disease is first diagnosed, the opportune time for surgical intervention has already lapsed. In addition, the effects of systemic treatment is relatively unsatisfactory. Metabolic reprogramming is one of the hallmarks of cancer. This study aimed to identify a set of genes related to metabolism to construct a predictive model for the prognosis of HCC. Methods The transcriptomic and clinical data of 352 HCC patients were obtained from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset and divided into a training cohort (n=212) and a testing cohort (n=140) at a ratio of 6:4. Univariate Cox regression analysis and the LASSO Cox regression model were used to identify 5 genes to establish a risk score for predicting the prognosis of HCC patients. Subsequently, the molecular characteristics of the model were assessed and the ability of the model to predict the tumor immune microenvironment and patient response to immunotherapy and chemotherapy was also examined. Results The risk score model was constructed based on the five genes, methyltransferase-like protein 6 (METTL6), RNA polymerase III subunit G (POLR3G), phosphoribosyl pyrophosphate amidotransferase (PPAT), SET Domain Bifurcated 2 (SETDB2), and suppressor of variegation 3-9 homolog 2 (SUV39H2). The Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) curves demonstrated that high-risk patients had a poorer overall survival (OS) compared to low-risk patients. he nomogram score had a better predictive ability compared to the common factors. Our results finally showed that high-risk cases were associated with cell proliferation and cell cycle related gene sets, high tumor protein P53 (TP53) mutation rate, suppressive immunity and increased sensitivity to cisplatin, gemcitabine and docetaxel. Meanwhile, low-risk cases were associated with cell cycle and immune response related pathways, low TP53 mutation rate, active immunity and more benefit from immunotherapy. Conclusions This study provided novel insights into the role of metabolism-related genes in HCC, and demonstrated that our model could be a promising prognostic biomarker for distinguishing the molecular and immune characteristics and inferring the potential response to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Jiang
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, China
| | - Liang Ma
- Department of Chemotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Jie Sun
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shujie Ni
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Scharsack JP, Wieczorek B, Schmidt-Drewello A, Büscher J, Franke F, Moore A, Branca A, Witten A, Stoll M, Bornberg-Bauer E, Wicke S, Kurtz J. Climate change facilitates a parasite's host exploitation via temperature-mediated immunometabolic processes. GLOBAL CHANGE BIOLOGY 2021; 27:94-107. [PMID: 33067869 DOI: 10.1111/gcb.15402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.
Collapse
Affiliation(s)
- Jörn P Scharsack
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Bartholomäus Wieczorek
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Alexander Schmidt-Drewello
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
- Institute for Evolution and Biodiversity, Limnology, University of Münster, Münster, Germany
| | - Janine Büscher
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Frederik Franke
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Andrew Moore
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Antoine Branca
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Anika Witten
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Monika Stoll
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, Plant Evolutionary Genomics, University of Münster, Münster, Germany
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Li YL, Chen CH, Chen JY, Lai YS, Wang SC, Jiang SS, Hung WC. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology 2020; 9:1830513. [PMID: 33117603 PMCID: PMC7575008 DOI: 10.1080/2162402x.2020.1830513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymph-node metastasis is a prognosis factor for poor clinical outcome of breast cancer patients. Currently, how breast cancer cells establish pre-metastatic niche in the tumor-draining lymph nodes (TDLNs) is still unclear. To address this question, we isolated heterogeneous cells including immune and stromal cells from naive lymph nodes (LNs) of the FVB/NJ mice and TDLNs of the MMTV-PyMT mice. Single-cell RNA sequencing was performed to investigate the transcriptome of the cells and various bioinformatics analyses were used to identify the altered pathways. Our results revealed several significant changes between naïve LNs and TDLNs. First, according to immunologic signature and pathway analysis, CD4+ and CD8 + T cells showed upregulated angiogenesis pathway genes and higher regulatory T (Treg)-associated genes while they demonstrated downregulation of interferon response and inflammatory response gene signatures, concurrently suggesting an immunosuppressive microenvironment in the TDLNs. Second, profiling of B cells showed down-regulation of marginal zone B lymphocytes in the TDLNs, which was validated by flow cytometric analysis. Third, we found the enhancement of oxidative phosphorylation pathway in the fibroblastic reticular cells (FRCs) of the MMTV-PyMT mice and the elevation of related genes including Prdx3, Ndufa4 and Uqcrb, suggesting massive ATP consumption and TCA cycle metabolism in the FRCs. Collectively, our results reveal the reprogramming of TDLNs during breast cancer progression at single-cell level in a spontaneous breast cancer model and suggest the changes in immune modulation and metabolic switch are key alterations in the preparation of pre-metastatic niche by breast cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, and the Graduate Program of Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Wood TR, Jóhannsson GF. Metabolic health and lifestyle medicine should be a cornerstone of future pandemic preparedness. LIFESTYLE MEDICINE 2020. [DOI: 10.1002/lim2.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Thomas R. Wood
- Department of Pediatrics University of Washington Seattle Washington
- Institute for Human and Machine Cognition Pensacola Florida
| | | |
Collapse
|
14
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Turbitt WJ, Rosean CB, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol Rev 2020; 295:203-219. [PMID: 32157710 PMCID: PMC7416819 DOI: 10.1111/imr.12849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Obesity is an established risk factor for many cancers and has recently been found to alter the efficacy of T cell-based immunotherapies. Currently, however, the effects of obesity on immunometabolism remain unclear. Understanding these associations is critical, given the fact that T cell metabolism is tightly linked to effector function. Thus, any obesity-associated changes in T cell bioenergetics are likely to drive functional changes at the cellular level, alter the metabolome and cytokine/chemokine milieu, and impact cancer immunotherapy outcomes. Here, we provide a brief overview of T cell metabolism in the presence and absence of solid tumor growth and summarize current literature regarding obesity-associated changes in T cell function and bioenergetics. We also discuss recent findings related to the impact of host obesity on cancer immunotherapy outcomes and present potential mechanisms by which T cell metabolism may influence therapeutic efficacy. Finally, we describe promising pharmaceutical therapies that are being investigated for their ability to improve CD8 T cell metabolism and enhance cancer immunotherapy outcomes in patients, regardless of their obesity status.
Collapse
Affiliation(s)
- William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
17
|
Wang X, Ping FF, Bakht S, Ling J, Hassan W. Immunometabolism features of metabolic deregulation and cancer. J Cell Mol Med 2018; 23:694-701. [PMID: 30450768 PMCID: PMC6349168 DOI: 10.1111/jcmm.13977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Immunometabolism is a branch dealing at the interface of immune functionalities and metabolic regulations. Considered as a bidirectional trafficking, metabolic contents and their precursors bring a considerable change in immune cells signal transductions which as a result affect the metabolic organs and states as an implication. Lipid metabolic ingredients form a major chunk of daily diet and have a proven contribution in immune cells induction, which then undergo metabolic pathway shuffling inside their ownself. Lipid metabolic states activate relevant metabolic pathways inside immune cells that in turn prime appropriate responses to outside environment in various states including lipid metabolic disorders itself and cancers as an extension. Although data on Immunometabolism are still growing, but scientific community need to adjust and readjust according to recent data on given subject. This review attempts to provide current important data on Immunometabolism and consequently its metabolic ramifications. Incumbent data on various lipid metabolic deregulations like obesity, metabolic syndrome, obese asthma and atherosclerosis are analysed. Further, metabolic repercussions on cancers and its immune modalities are also analysed.
Collapse
Affiliation(s)
- Xue Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng-Feng Ping
- Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Sahar Bakht
- Faculty of Pharmacy and alternative medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|