1
|
Köberle B, Usanova S, Piee-Staffa A, Heinicke U, Clauss P, Brozovic A, Kaina B. Strong apoptotic response of testis tumor cells following cisplatin treatment. Int Urol Nephrol 2024; 56:1007-1017. [PMID: 37891379 PMCID: PMC10853295 DOI: 10.1007/s11255-023-03825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Most solid metastatic cancers are resistant to chemotherapy. However, metastatic testicular germ cell tumors (TGCT) are cured in over 80% of patients using cisplatin-based combination therapy. Published data suggest that TGCTs are sensitive to cisplatin due to limited DNA repair and presumably also to a propensity to undergo apoptosis. To further investigate this aspect, cisplatin-induced activation of apoptotic pathways was investigated in cisplatin-sensitive testis tumor cells (TTC) and compared to cisplatin-resistant bladder cancer cells. Apoptosis induction was investigated using flow cytometry, caspase activation and PARP-1 cleavage. Immunoblotting and RT-PCR were applied to investigate pro- and anti-apoptotic proteins. Transfections were performed to target p53- and Fas/FasL-mediated apoptotic signaling. Immunoblotting experiments revealed p53 to be induced in TTC, but not bladder cancer cells following cisplatin. Higher levels of pro-apoptotic Bax and Noxa were observed in TTC, anti-apoptotic Bcl-2 was solely expressed in bladder cancer cells. Cisplatin led to translocation of Bax to the mitochondrial membrane in TTC, resulting in cytochrome C release. Cisplatin increased the expression of FasR mRNA and FasL protein in all tumor cell lines. Targeting the apoptotic pathway via siRNA-mediated knockdown of p53 and FAS reduced death receptor-mediated apoptosis and increased cisplatin resistance in TTC, indicating the involvement of FAS-mediated apoptosis in the cisplatin TTC response. In conclusion, both the death receptor and the mitochondrial apoptotic pathway become strongly activated in TTC following cisplatin treatment, explaining, together with attenuated DNA repair, their unique sensitivity toward platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Beate Köberle
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany.
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Svetlana Usanova
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Andrea Piee-Staffa
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Ulrike Heinicke
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, 60596, Frankfurt Am Main, Germany
| | - Philipp Clauss
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Bernd Kaina
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
2
|
Hui KKW, Dojo Soeandy C, Chang S, Vizeacoumar FS, Sun T, Datti A, Henderson JT. Cell-based high-throughput screen for small molecule inhibitors of Bax translocation. J Cell Mol Med 2018; 23:1784-1797. [PMID: 30548903 PMCID: PMC6378228 DOI: 10.1111/jcmm.14076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant regulation of programmed cell death (PCD) has been tied to an array of human pathologies ranging from cancers to autoimmune disorders to diverse forms of neurodegeneration. Pharmacologic modulation of PCD signalling is therefore of central interest to a number of clinical and biomedical applications. A key component of PCD signalling involves the modulation of pro‐ and anti‐apoptotic Bcl‐2 family members. Among these, Bax translocation represents a critical regulatory phase in PCD. In the present study, we have employed a high‐content high‐throughput screen to identify small molecules which inhibit the cellular process of Bax re‐distribution to the mitochondria following commitment of the cell to die. Screening of 6246 Generally Recognized As Safe compounds from four chemical libraries post‐induction of cisplatin‐mediated PCD resulted in the identification of 18 compounds which significantly reduced levels of Bax translocation. Further examination revealed protective effects via reduction of executioner caspase activity and enhanced mitochondrial function. Consistent with their effects on Bax translocation, these compounds exhibited significant rescue against in vitro and in vivo cisplatin‐induced apoptosis. Altogether, our findings identify a new set of clinically useful small molecules PCD inhibitors and highlight the role which cAMP plays in regulating Bax‐mediated PCD.
Collapse
Affiliation(s)
- Kelvin Kai-Wan Hui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,RIKEN Center for Brain Science, Wako, Japan
| | - Chesarahmia Dojo Soeandy
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Stephano Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, Royal University Hospital, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas Sun
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Network Biology Collaborative Centre, Toronto, ON, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|