1
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
2
|
Li Z, Hu Y, Wang W, Zou F, Yang J, Gao W, Feng S, Chen G, Shi C, Cai Y, Deng G, Chen X. Integrating pathogen- and host-derived blood biomarkers for enhanced tuberculosis diagnosis: a comprehensive review. Front Immunol 2024; 15:1438989. [PMID: 39185416 PMCID: PMC11341448 DOI: 10.3389/fimmu.2024.1438989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
This review explores the evolving landscape of blood biomarkers in the diagnosis of tuberculosis (TB), focusing on biomarkers derived both from the pathogen and the host. These biomarkers provide critical insights that can improve diagnostic accuracy and timeliness, essential for effective TB management. The document highlights recent advancements in molecular techniques that have enhanced the detection and characterization of specific biomarkers. It also discusses the integration of these biomarkers into clinical practice, emphasizing their potential to revolutionize TB diagnostics by enabling more precise detection and monitoring of the disease progression. Challenges such as variability in biomarker expression and the need for standardized validation processes are addressed to ensure reliability across different populations and settings. The review calls for further research to refine these biomarkers and fully harness their potential in the fight against TB, suggesting a multidisciplinary approach to overcome existing barriers and optimize diagnostic strategies. This comprehensive analysis underscores the significance of blood biomarkers as invaluable tools in the global effort to control and eliminate TB.
Collapse
Affiliation(s)
- Zhaodong Li
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yunlong Hu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fa Zou
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Yang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Gao
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - SiWan Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guanghuan Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Chenyan Shi
- Department of Preventive Medicine, School of Public Health, Shenzhen University, Shenzhen, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
3
|
Jabeen S, Ahmed N, Rashid F, Lal N, Kong F, Fu Y, Zhang F. Circular RNAs in tuberculosis and lung cancer. Clin Chim Acta 2024; 561:119810. [PMID: 38866175 DOI: 10.1016/j.cca.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
This review signifies the role of circular RNAs (circRNAs) in tuberculosis (TB) and lung cancer (LC), focusing on pathogenesis, diagnosis, and treatment. CircRNAs, a newly discovered type of non-coding RNA, have emerged as key regulators of gene expression and promising biomarkers in various bodily fluids due to their stability. The current review discusses circRNA biogenesis, highlighting their RNase-R resistance due to their loop forming structure, making them effective biomarkers. It details their roles in gene regulation, including splicing, transcription control, and miRNA interactions, and their impact on cellular processes and diseases. For LC, the review identifies circRNA dysregulation affecting cell growth, motility, and survival, and their potential as therapeutic targets and biomarkers. In TB, it addresses circRNAs' influence on host anti-TB immune responses, proposing their use as early diagnostic markers. The paper also explores the interplay between TB and LC, emphasizing circRNAs as dual biosignatures, and the necessity for differential diagnosis. It concludes that no single circRNA biomarker is universally applicable for both TB and LC. Ultimately, the review highlights the pivotal role of circRNAs in TB and LC, encouraging further research in biomarker identification and therapeutic development concomitant for both diseases.
Collapse
Affiliation(s)
- Sadia Jabeen
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Niaz Ahmed
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Faiqa Rashid
- Department of Bioinformatics And Biosciences, Capital University Of Science & Technology, Islamabad Expressway, Kahuta Road, Zone-V, Islamabad, Pakistan
| | - Nand Lal
- Department of Physiology, School of Biomedical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Fanhui Kong
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Yingmei Fu
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China.
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
4
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Jafarbeik-Iravani N, Kolahdozan S, Esmaeili R. The role of ASXL1 mutations and ASXL1 CircRNAs in cancer. Biomarkers 2024; 29:1-6. [PMID: 38193494 DOI: 10.1080/1354750x.2024.2304187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND Mutations in the Additional Sex Combs Like 1 (ASXL1) gene were first reported in myelodysplastic syndromes. Recent studies have clarified the relationship between ASXL1 mutations and the development of cancers. OBJECTIVE This study aims to review the roles of ASXL1 and ASXL1 CircRNAs, such as epigenetic regulation, chromatin modification, and transcription factor function in malignancies. METHOD This study is a review of articles related to the role of ASXL1 and ASXL1 CircRNAs in malignancies, retrieved from PubMed and Scopus. RESULTS ASXL1 plays a role in malignancies and is also related to poor overall survival and cancer metastasis. ASXL1 encodes conserved and abundant Circular RNAs (circRNAs) that act as post-transcriptional regulators, regulating tumorigenesis and progression in cancer. ASXL1 circRNA was identified in the top 10% of differentially expressed circRNAs in clinically relevant tissues. Additionally, the role of ASXL1 gene circRNAs in cancer development is reviewed in this study. CONCLUSION ASXL1 and ASXL1circRNA have dual functions in combination with different proteins, being involved in both transcriptional activation and repression in a context-dependent manner. Moreover, studies indicate these genes play an important role in epithelial-mesenchymal transition (EMT) and metastasis. Ongoing research is aimed at determining this gene family's function in biological events.
Collapse
Affiliation(s)
- Narges Jafarbeik-Iravani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sara Kolahdozan
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
8
|
Yuan H, Liu F, Long J, Duan G, Yang H. A review on circular RNAs and bacterial infections. Int J Biol Macromol 2023:125391. [PMID: 37321437 DOI: 10.1016/j.ijbiomac.2023.125391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Bacterial infections and related diseases have been a major burden on social public health and economic stability around the world. However, the effective diagnostic methods and therapeutic approaches to treat bacterial infections are still limited. As a group of non-coding RNA, circular RNAs (circRNAs) that were expressed specifically in host cells and played a key regulatory role have the potential to be of diagnostic and therapeutic value. In this review, we systematically summarize the role of circRNAs in common bacterial infections and their potential roles as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Sun H, Ma Y, Yang Y, Sun C, Li H. Genome-wide characterization of circRNA expression profile in overexpression of RIP2 chicken macrophages associated with avian pathogenic E.coli infection. Avian Pathol 2023; 52:62-77. [PMID: 36399118 DOI: 10.1080/03079457.2022.2144132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Avian pathogenic E. coli (APEC) can cause localized and systemic diseases in poultry, threatening human health via meat or egg contamination and resulting in considerable economic losses to the poultry industry globally. Increasing evidence shows circRNAs were widely involved in various biological processes. However, the role of circRNAs in the host response against APEC infection, especially correlated with the regulation of RIP2, remains unclear. Herein, the RNAseq technology was used to identify the circRNA expression profiles in the overexpression of RIP2 macrophages with or without APEC infection. A total of 256 and 287 differentially expressed (DE) circRNAs were identified in the overexpression of RIP2 group (oeRIP2) vs. the wild-type group (WT) and oeRIP2 + APEC vs. APEC, respectively, whose parental genes were involved in MAPK signalling pathway, Wnt signalling pathway, focal adhesion, tight junction, and VEGF signalling pathways. Specifically, the key circRNAs, such as 5:814443-825127, 10:18922360-18928461, 2:8746306-8750639, and 2:124177751-124184063 might play a critical role in APEC infection and the regulation of RIP2. As a whole, these findings will facilitate understanding the molecular mechanism underlying circRNAs, especially related to the regulation of the RIP2 gene. Meanwhile, the study may offer new ideas to improve host immune and inflammatory response against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People's Republic of China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
10
|
Allahverdy J, Rashidi N. MicroRNAs induced by Listeria monocytogenes and their role in cells. Microb Pathog 2023; 175:105997. [PMID: 36669673 DOI: 10.1016/j.micpath.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Listeria monocytogenes (Lm) causes abortions at high rates and threatens newborns' lives. Also, the elderly and immunocompromised individuals are particularly vulnerable neurologically. The bacterium exerts its pathogenesis intracellularly by manipulating cell organs. It manipulates nucleus elements, microRNAs (miRNAs), in order to increase survival and evade immunity. miRNAs are small non-coding RNAs that degrade gene expression post-transcriptionally. Any alteration to the expression of miRNAs affects various cascades in cells, especially immunity-related responses. Thus, utilizing miRNAs as a novel therapeutic agent not only restricts infection but enhances immunity reactions. This review provides an overview of miRNAs in listeriosis, their role in cells, and their prospects as therapy.
Collapse
Affiliation(s)
- Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Rashidi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Circular RNAs and tuberculosis infection. Int J Biol Macromol 2023; 226:1218-1225. [PMID: 36442574 DOI: 10.1016/j.ijbiomac.2022.11.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/13/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis (Mtb) that affects the immune system chronically. Therefore, effective control and treatment of tuberculosis requires rapid and accurate diagnostic strategies. Tuberculosis has always been a global burden on health, social and economic systems due to the lack of standard curative and diagnostic (bio)markers. Accordingly, the management and monitoring of patients with active TB at the primary care level may be possible through new, rapid and cost-effective non-sputum-based diagnostic procedures. Biomarkers can help diagnose various diseases, including circular RNA (circRNA), which has recently been introduced as an endogenous, abundant and stable RNA in the cytoplasm with unique tissue specificity. There are frequent reports of circRNA involvement in many pathological and physiological processes in human beings. Recent studies have highlighted the presence of circRNAs in serum and their role as promising biomarkers in the diagnosis of the disease, potentially due to the continuous, stable, closed covalent circular structures and lack of easy degradation by nucleases. The purpose of this review article is to scrutinize the behavior of circulating plasma RNAs in relation to the pathogenesis and diagnosis of tuberculosis.
Collapse
|
12
|
Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, Wang Z, Wang C, Li W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13:987018. [PMID: 36311754 PMCID: PMC9608867 DOI: 10.3389/fimmu.2022.987018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous burden on public hygiene. Congenital and adaptive immunity in the human body act as robust defenses against the pathogens. However, in coevolution with humans, this microbe has gained multiple lines of mechanisms to circumvent the immune response to sustain its intracellular persistence and long-term survival inside a host. Moreover, emerging evidence has revealed that this stealthy bacterium can alter the expression of demic noncoding RNAs (ncRNAs), leading to dysregulated biological processes subsequently, which may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the differential accumulation in clinical samples endows them with the capacity to be indicators in the time of tuberculosis suffering. In this article, we reviewed the nearest insights into the impact of ncRNAs during Mycobacterium tuberculosis infection as realized via immune response modulation and their potential as biomarkers for the diagnosis, drug resistance identification, treatment evaluation, and adverse drug reaction prediction of tuberculosis, aiming to inspire novel and precise therapy development to combat this pathogen in the future.
Collapse
Affiliation(s)
- Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiechao Ma
- Artificial Intelligence (AI) Lab, Deepwise Healthcare, Beijing, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wang Q, Yang D, Zuo Y, Wang D, Li W. Emerging roles of circular RNAs in tuberculosis. Front Immunol 2022; 13:995701. [PMID: 36211395 PMCID: PMC9532239 DOI: 10.3389/fimmu.2022.995701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Tuberculosis (TB) remains a major global health issue, resulting in around 1.5 million people deaths each year. Better diagnostic and therapeutic tools are urgently needed. Circular RNAs (circRNAs) are a new class of noncoding RNAs with a covalently closed structure, and exhibit a tissue-, cell-, and developmental stage-specific expression pattern. Recently, circRNAs were thought to be regulatory molecules implicated in the onset and progression of a series of human diseases including tuberculosis. In tuberculosis, circRNAs have been shown to regulate host anti-TB immune responses, such as decreasing monocyte apoptosis, enhancing autophagy and promoting macrophage polarization. Importantly, circRNAs are physically stable and abundant in several types of body fluids. Therefore they are considered as promising minimally-invasive biomarkers. In this review, we focus on the recent advances in the immune regulatory roles of circRNAs, as well as their potential diagnostic value in TB.
Collapse
Affiliation(s)
- Qinglan Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qinglan Wang, ; Weimin Li,
| | - Danni Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zuo
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qinglan Wang, ; Weimin Li,
| |
Collapse
|
14
|
Huang Y, Li Y, Lin W, Fan S, Chen H, Xia J, Pi J, Xu JF. Promising Roles of Circular RNAs as Biomarkers and Targets for Potential Diagnosis and Therapy of Tuberculosis. Biomolecules 2022; 12:biom12091235. [PMID: 36139074 PMCID: PMC9496049 DOI: 10.3390/biom12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs. Accumulating studies have identified that circRNAs are widely involved in a variety of physiological and pathological processes, acting as the sponges or decoys for microRNAs and proteins, scaffold platforms for proteins, modulators for transcription and special templates for translation. Due to the stable and widely spread characteristics of circRNAs, they are expected to serve as promising prognostic/diagnostic biomarkers and therapeutic targets for diseases. In this review, we briefly describe the biogenesis, classification, detection technology and functions of circRNAs, and, in particular, outline the dynamic, and sometimes aberrant changes of circRNAs in TB. Moreover, we further summarize the recent progress of research linking circRNAs to TB-related pathogenetic processes, as well as the potential roles of circRNAs as diagnostic biomarkers and miRNAs sponges in the case of Mtb infection, which is expected to enhance our understanding of TB and provide some novel ideas about how to overcome the challenges associated TB in the future.
Collapse
Affiliation(s)
- Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
15
|
Profile analysis of circRNAs in human THP-1 derived macrophages infected with intracellular Staphylococcus aureus. Microb Pathog 2022; 165:105466. [PMID: 35247499 DOI: 10.1016/j.micpath.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Intracellular Staphylococcus aureus (S. aureus) infection is generally persistent, recurrent and difficult to treat due to the poor availability of antibiotics within macrophages cells and the lack of ideal diagnostic markers. Circular RNAs (circRNAs), with covalently closed circular structures, exists in the serum stably and is not easily degraded by nucleases. Besides, circRNAs play a pivotal in the eukaryotic regulation of genes expression and served as biomarkers in variety disease including microbial infections. However, the function of host circRNAs in intracellular S. aureus infection remains largely unclear. METHODS In this study, the circRNAs expression profile was investigated by RNA sequencing technology in both S. aureus-infected THP-1 derived macrophages and mock control cells. The differentially expressed circRNAs (DE circRNAs) with a fold-change >1.5 (p < 0.05) are analyzed using functional pathway clustering prediction. Then, RT-qPCR was performed to verify the top 2 up-regulated circRNAs in the THP-1 cell and human serum samples so as to evaluate the value of circRNAs for S. aureus diagnosis. RESULTS An intracellular survival THP-1 derived macrophages model of S. aureus infection was established. A total of 5,299 circRNAs were identified in human THP-1 derived macrophages infected with intracellular S. aureus. There were 61 DE circRNAs with a fold-change >1.5 (p < 0.05) after S. aureus infection. Among them, 22 circRNAs were up-regulated while 39 circRNAs down-regulated. GO and KEGG pathway analysis demonstrated that DE circRNAs were enriched in the processes such as Neurotrophin, Pyruvate metabolism and Notch signaling pathway. Moreover, hsa_circ_0000311 and chr13:43500472-43544806-(novel) were verified to be significantly upregulated in THP-1 derived macrophages and human serum samples between two groups. Finally, the networks of circRNA-miRNA-mRNA based on these two circRNAs were constructed respectively. CONCLUSION Our study provides the first profile analysis of host circRNAs involved in intracellular S. aureus infection, which may serve as biomarkers for S. aureus diagnosis and contribute to the understanding of S. aureus evasion mechanisms.
Collapse
|
16
|
Pattnaik B, Patnaik N, Mittal S, Mohan A, Agrawal A, Guleria R, Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res 2022; 7:16-26. [PMID: 35128217 PMCID: PMC8792429 DOI: 10.1016/j.ncrna.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major infectious disease across the globe. With increasing TB infections and a rise in multi-drug resistance, rapid diagnostic modalities are required to achieve TB control. Radiological investigations and microbiological tests (microscopic examination, cartridge-based nucleic acid amplification tests, and cultures) are most commonly used to diagnose TB. Histopathological/cytopathological examinations are also required for an accurate diagnosis in many patients. The causative agent, Mycobacterium tuberculosis (Mtb), is known to circumvent the host's immune system. Circulating microRNAs (miRNAs) play a crucial role in biological pathways and can be used as a potential biomarker to detect tuberculosis. miRNAs are small non-coding RNAs and negatively regulate gene expression during post-transcriptional regulation. The differential expression of miRNAs in multiple clinical samples in tuberculosis patients may be helpful as potential disease biomarkers. This review summarizes the literature on miRNAs in various clinical samples as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Niharika Patnaik
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
17
|
Wu M, Liu Z, Zhang S. Down-regulation of hsa_circ_0045474 induces macrophage autophagy in tuberculosis via miR-582-5p/TNKS2 axis. Innate Immun 2021; 28:11-18. [PMID: 34861798 PMCID: PMC8841633 DOI: 10.1177/17534259211064285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Macrophage autophagy plays a major role in the control and elimination of invading Mycobacterium tuberculosis. However, the function and mechanism of circRNA on macrophage autophagy in tuberculosis remain unclear. Therefore, this study aimed to explore the role of circRNA underlying macrophage autophagy in tuberculosis. Quantitative real-time polymerase chain reaction was used to detect the expression of hsa_circ_0045474, miR-582-5p and TNKS2. Autophagy was detected by LC3B immunofluorescence and transmission electron microscopy. Dual-luciferase reporter assays were used to detect the relationship of miR-582-5p and hsa_circ_0045474 or TNKS2. Western blot was used to detect the expression of LC3-І and LC3-ІІ. The results showed that hsa_circ_0045474 was down-regulated in monocytes from patients with tuberculosis and induced autophagy in macrophages. hsa_circ_0045474 sponged miR-582-5p and negatively regulated miR-582-5p expression. Overexpression of miR-582-5p affected by hsa_circ_0045474 induced autophagy in macrophages. TNKS2 served as a target of miR-582-5p and down-regulation of TNKS2 induced autophagy in macrophages regulated by miR-582-5p. In conclusion, our results demonstrated that hsa_circ_0045474 down-regulation induced macrophage autophagy in tuberculosis via miR-582-5p/ TNKS2 axis, implying a novel strategy to treat the occurrence of active pulmonary tuberculosis caused by immune escape of M. tuberculosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| | - Zhibin Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| | - Shaojun Zhang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| |
Collapse
|
18
|
Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 2021; 12:911-946. [PMID: 33131025 PMCID: PMC8674396 DOI: 10.1007/s13238-020-00799-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.
Collapse
Affiliation(s)
- Guoxia Wen
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
19
|
Wei L, Liu K, Jia Q, Zhang H, Bie Q, Zhang B. The Roles of Host Noncoding RNAs in Mycobacterium tuberculosis Infection. Front Immunol 2021; 12:664787. [PMID: 34093557 PMCID: PMC8170620 DOI: 10.3389/fimmu.2021.664787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis remains a major health problem. Mycobacterium tuberculosis, the causative agent of tuberculosis, can replicate and persist in host cells. Noncoding RNAs (ncRNAs) widely participate in various biological processes, including Mycobacterium tuberculosis infection, and play critical roles in gene regulation. In this review, we summarize the latest reports on ncRNAs (microRNAs, piRNAs, circRNAs and lncRNAs) that regulate the host response against Mycobacterium tuberculosis infection. In the context of host-Mycobacterium tuberculosis interactions, a broad and in-depth understanding of host ncRNA regulatory mechanisms may lead to potential clinical prospects for tuberculosis diagnosis and the development of new anti-tuberculosis therapies.
Collapse
Affiliation(s)
- Li Wei
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Kai Liu
- Nursing Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingzhi Jia
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
20
|
Dai X, Cheng Y, Wang C, Huang J, Chao J. Role of circular RNAs in visceral organ fibrosis. Food Chem Toxicol 2021; 150:112074. [PMID: 33610620 DOI: 10.1016/j.fct.2021.112074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs produced during pre-mRNA splicing and are emerging as new members of the gene regulatory network. Unlike linear RNAs, circRNAs have a unique structure with a covalently closed loop formed from the ligation of exons, introns, or both. CircRNAs are widely expressed in various organisms in a species-, tissue-, developmental stage- and disease-specific manner; circRNAs have been demonstrated to play a vital role in the pathogenesis and progression of human diseases. Fibrosis is characterized by an abnormal excessive deposition of extracellular matrix (ECM) in the extracellular space and plays important roles in many different pathologies of various organs. CircRNAs function as master regulators of gene expression to "sponge" or sequester other genes and target gene expression, transcription, splicing, etc. Increasing evidence has revealed that circRNAs are tightly associated with fibrotic diseases in various organs, including the lungs, liver, heart and kidneys. Herein, we provide the current understanding of the molecular characteristics of circRNAs and summarize the findings from circRNA studies in which the functions and mechanisms of action of circRNAs in organ fibrosis were proposed.
Collapse
Affiliation(s)
- Xiaoniu Dai
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, 712082, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yusi Cheng
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cuifen Wang
- Tissue Sciences Facility, University of Nebraska Medical Center, 985815 Nebraska Medical Center, Omaha, NE6B19B-5815, USA
| | - Jie Huang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, 712082, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
21
|
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021; 246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
Collapse
Affiliation(s)
- Renuga Devi Kanabalan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Le Jie Lee
- Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Rosnah Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia.
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
22
|
Ma S, Niu M, Hao Z, Liu M, Tong C, Zhao X. Selective packaged circular RNAs in milk extracellular vesicles during Staphylococcus aureus infection may have potential against bacterial infection. RNA Biol 2020; 18:818-831. [PMID: 33241726 DOI: 10.1080/15476286.2020.1853975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Extracellular vesicles (EVs) provide a novel intercellular communication mechanism to transfer biologically important molecules to target cells. Although several pieces of evidence have shown that EVs have potential to respond to bacterial infections, our knowledge about the role of circular RNA (circRNA), an important cargo of EV, behind this process remains poor. In particular, the mechanism by which circRNAs are packaged into EVs remains elusive during bacterial infection. In the present study, EVs from bovine milk samples with or without Staphylococcus aureus (S. aureus) infection were isolated. The presence of circRNAs in milk-derived EVs (MEVs) was validated for the first time by PCR amplification with convergent and divergent primers and the RNase R resistance test. Through high-throughput sequencing, the expression profile of circRNAs in EVs was found to be changed during S. aureus infection. Moreover, we demonstrated that circRNAs were selectively packaged into EVs. Finally, bioinformatic analyses predicted the involvement of differentially expressed circRNAs in immune functions. In summary, our findings offer an insight into the packaging mechanism of EV circRNAs and underscore the potential by which host used the EV circRNAs in response to pathogenic bacterial infections.
Collapse
Affiliation(s)
- Shaoyang Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zehua Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Miaomiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Xie L, Chao X, Teng T, Li Q, Xie J. Identification of Potential Biomarkers and Related Transcription Factors in Peripheral Blood of Tuberculosis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196993. [PMID: 32987825 PMCID: PMC7579196 DOI: 10.3390/ijerph17196993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB), one major threat to humans, can infect one third of the worldwide population, and cause more than one million deaths each year. This study aimed to identify the effective diagnosis and therapy biomarkers of TB. Hence, we analyzed two microarray datasets (GSE54992 and GSE62525) derived from the Gene Expression Omnibus (GEO) database to find the differentially expressed genes (DEGs) of peripheral blood mononuclear cell (PBMC) between TB patients and healthy specimens. Functional and pathway enrichment of the DEGs were analyzed by Metascape database. Protein-protein interaction (PPI) network among the DEGs were constructed by STRING databases and visualized in Cytoscape software. The related transcription factors regulatory network of the DEGs was also constructed. A total of 190 DEGs including 36 up-regulated genes and 154 down-regulated genes were obtained in TB samples. Gene functional enrichment analysis showed that these DEGs were enriched in T cell activation, chemotaxis, leukocyte activation involved in immune response, cytokine secretion, head development, etc. The top six hub genes (namely, LRRK2, FYN, GART, CCR7, CXCR5, and FASLG) and two significant modules were got from PPI network of DEGs. Vital transcriptional factors, such as FoxC1 and GATA2, were discovered with close interaction with these six hub DEGs. By systemic bioinformatic analysis, many DEGs associated with TB were screened, and these identified hub DEGs may be potential biomarkers for diagnosis and treatment of TB in the future.
Collapse
Affiliation(s)
- Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (L.X.); (X.C.); (T.T.); (Q.L.)
| | - Xiaoyu Chao
- Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (L.X.); (X.C.); (T.T.); (Q.L.)
| | - Tieshan Teng
- Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (L.X.); (X.C.); (T.T.); (Q.L.)
| | - Qiming Li
- Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (L.X.); (X.C.); (T.T.); (Q.L.)
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- Correspondence: ; Tel.: +86-236-836-7108
| |
Collapse
|
24
|
Liu H, Lu G, Wang W, Jiang X, Gu S, Wang J, Yan X, He F, Wang J. A Panel of CircRNAs in the Serum Serves as Biomarkers for Mycobacterium tuberculosis Infection. Front Microbiol 2020; 11:1215. [PMID: 32582119 PMCID: PMC7296121 DOI: 10.3389/fmicb.2020.01215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB), one of the ancient and deadliest diseases, is a chronic immune disorder caused by Mycobacterium tuberculosis (Mtb) infection. Due to the lack of ideal diagnostic and therapeutic markers, TB is still posing a major health, social, and economic burden worldwide. Circular RNA (circRNA), a newly discovered endogenous RNA, is abundant and stable in the cytoplasm and has tissue specificity. More and more studies suggested circRNA is involved in a variety of human pathological and physiological processes. Recently, several studies have confirmed circRNAs not only existed in the serum but also could serve as ideal biomarkers for detecting diseases since the circRNAs have continuous, stable, and covalently closed circular structures and are not easily degraded by nucleases. In this study, we screened the circRNA expression profiles in active TB serum samples and healthy volunteers serum samples by circRNA microarrays. Then, we performed qRT-PCR to verified the dysregulated circRNAs and ROC curve analysis to evaluate the value of circRNAs for TB diagnosis. The results showed circRNA_051239, circRNA_029965, and circRNA_404022 could serve as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Hengjun Liu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weixiang Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinrui Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuangshuang Gu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Yan
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei He
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
25
|
Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, Song JK, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vectors 2020; 13:167. [PMID: 32245514 PMCID: PMC7118956 DOI: 10.1186/s13071-020-04047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eimeria necatrix, the most highly pathogenic coccidian in chicken small intestines, can cause high morbidity and mortality in susceptible birds and devastating economic losses in poultry production, but the underlying molecular mechanisms in interaction between chicken and E. necatrix are not entirely revealed. Accumulating evidence shows that the long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are key regulators in various infectious diseases. However, the expression profiles and roles of these two non-coding RNAs (ncRNAs) during E. necatrix infection are still unclear. METHODS The expression profiles of mRNAs, lncRNAs and circRNAs in mid-segments of chicken small intestines at 108 h post-infection (pi) with E. necatrix were analyzed by using the RNA-seq technique. RESULTS After strict filtering of raw data, we putatively identified 49,183 mRNAs, 818 lncRNAs and 4153 circRNAs. The obtained lncRNAs were classified into four types, including 228 (27.87%) intergenic, 67 (8.19%) intronic, 166 (20.29%) anti-sense and 357 (43.64%) sense-overlapping lncRNAs; of these, 571 were found to be novel. Five types were also predicted for putative circRNAs, including 180 exonic, 54 intronic, 113 antisense, 109 intergenic and 3697 sense-overlapping circRNAs. Eimeria necatrix infection significantly altered the expression of 1543 mRNAs (707 upregulated and 836 downregulated), 95 lncRNAs (49 upregulated and 46 downregulated) and 13 circRNAs (9 upregulated and 4 downregulated). Target predictions revealed that 38 aberrantly expressed lncRNAs would cis-regulate 73 mRNAs, and 1453 mRNAs could be trans-regulated by 87 differentially regulated lncRNAs. Additionally, 109 potential sponging miRNAs were also identified for 9 circRNAs. GO and KEGG enrichment analysis of target mRNAs for lncRNAs, and sponging miRNA targets and source genes for circRNAs identified associations of both lncRNAs and circRNAs with host immune defense and pathogenesis during E. necatrix infection. CONCLUSIONS To the best of our knowledge, the present study provides the first genome-wide analysis of mRNAs, lncRNAs and circRNAs in chicken small intestines infected with E. necatrix. The obtained data will offer novel clues for exploring the interaction mechanisms between chickens and Eimeria spp.
Collapse
Affiliation(s)
- Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Peng Lai
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
26
|
Wang K, Wei X, Wei Q, Lu D, Li W, Pan B, Chen J, Xie H, Zheng S, Xu X. A two-circular RNA signature of donor circFOXN2 and circNECTIN3 predicts early allograft dysfunction after liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:94. [PMID: 32175387 DOI: 10.21037/atm.2019.12.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Early allograft dysfunction (EAD) following liver transplantation is associated with poor recipient and graft survival. In recent years, circular RNAs (circRNAs) have emerged as important components of endogenous RNAs. This study aims to explore the expression profile and predictive value of graft circular RNAs for EAD after liver transplantation. Methods RNA sequencing was conducted to identify the circRNA profile in donor liver tissues. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify candidate circRNAs. A novel model combining circular RNA signature was established to predict EAD based on the multivariate analysis. Results A total of 442 circRNAs were differentially expressed between the EAD and non-EAD groups, of which, 223 were significantly upregulated and 219 were downregulated in the EAD group (Fold change >2, P<0.05). qRT-PCR validation indicated that circFOXN2 and circNECTIN3 levels in the EAD group were significantly lower than those in the non-EAD group (P=0.038, 0.024, respectively; n=115). Among the 115 recipients, 32 recipients with high circFOXN2 expression were classified as circular RNA signature A and the rest recipients with low circFOXN2 expression were categorized into circular RNA signature B (n=33, high circNECTIN3 expression) and C (n=50, low circNECTIN3 expression). The incidence rates of EAD in signature A, B and C were significantly different (3.1%, 21.2% and 42.0%, respectively; P=0.000). According to the multivariate analysis, a novel predictive model for EAD was developed based on CIT (P=0.000) and circular RNA signature (P=0.013). The novel model displayed a high predictive value for EAD with areas under the curve (AUC) of 0.870 (95% CI: 0.797-0.942). Conclusions Donor circFOXN2 and circNEXTIN3 were associated with the incidence of EAD. The novel model combing the two-circular RNA signature had a high predictive value for EAD.
Collapse
Affiliation(s)
- Kun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Wangyao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Binhua Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Junli Chen
- China Liver Transplant Registry, Hangzhou 310003, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310004, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| |
Collapse
|
27
|
Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, Eri R, Larsson M, Shankar EM. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front Microbiol 2019; 10:2789. [PMID: 31921004 PMCID: PMC6930807 DOI: 10.3389/fmicb.2019.02789] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) treatment monitoring is paramount to clinical decision-making and the host biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is inadequate. Although GeneXpert detects total DNA present in the sample regardless live or dead bacilli present in clinical samples, all the commercial tests available thus far have low sensitivity. Humoral responses against Mycobacterium tuberculosis (Mtb) antigens are generally low, which precludes the use of serological tests for TB diagnosis, prognosis, and treatment monitoring. Mtb-specific CD4+ T cells correlate with Mtb antigen/bacilli burden and hence might serve as good biomarkers for monitoring treatment progress. Omics-based techniques are capable of providing a more holistic picture for disease mechanisms and are more accurate in predicting TB disease outcomes. The current review aims to discuss some of the recent advances on TB biomarkers, particularly host biomarkers that have the potential to diagnose and differentiate active TB and LTBI as well as their use in disease prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Yean K Yong
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Y Tan
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia.,Department of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Alireza Saeidi
- Department of Pediatrics, Emory Vaccine Center, Atlanta, GA, United States
| | - Won F Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Vijayakumar Velu
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, United States
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Esaki M Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, India
| |
Collapse
|
28
|
Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection. mBio 2019; 10:mBio.01037-19. [PMID: 31796535 PMCID: PMC6890987 DOI: 10.1128/mbio.01037-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis is the infectious disease with the worldwide largest disease burden and there remains a great need for better diagnostic biomarkers to detect latent and active M. tuberculosis infection. RNA molecules hold great promise in this regard, as their levels of expression may differ considerably between infected and uninfected subjects. We have measured expression changes in the four major classes of small noncoding RNAs in blood samples from patients with different stages of TB infection. We found that, in addition to miRNAs (which are known to be highly regulated in blood cells from TB patients), expression of piRNA and snoRNA is greatly altered in both latent and active TB, yielding promising biomarkers. Even though the functions of many sncRNA other than miRNA are still poorly understood, our results strongly suggest that at least piRNA and snoRNA populations may represent hitherto underappreciated players in the different stages of TB infection. In tuberculosis (TB), as in other infectious diseases, studies of small noncoding RNAs (sncRNA) in peripheral blood have focused on microRNAs (miRNAs) but have neglected the other major sncRNA classes in spite of their potential functions in host gene regulation. Using RNA sequencing of whole blood, we have therefore determined expression of miRNA, PIWI-interacting RNA (piRNA), small nucleolar RNA (snoRNA), and small nuclear RNA (snRNA) in patients with TB (n = 8), latent TB infection (LTBI; n = 21), and treated LTBI (LTBItt; n = 6) and in uninfected exposed controls (ExC; n = 14). As expected, sncRNA reprogramming was greater in TB than in LTBI, with the greatest changes seen in miRNA populations. However, substantial dynamics were also evident in piRNA and snoRNA populations. One miRNA and 2 piRNAs were identified as moderately accurate (area under the curve [AUC] = 0.70 to 0.74) biomarkers for LTBI, as were 1 miRNA, 1 piRNA, and 2 snoRNAs (AUC = 0.79 to 0.91) for accomplished LTBI treatment. Logistic regression identified the combination of 4 sncRNA (let-7a-5p, miR-589-5p, miR-196b-5p, and SNORD104) as a highly sensitive (100%) classifier to discriminate TB from all non-TB groups. Notably, it reclassified 8 presumed LTBI cases as TB cases, 5 of which turned out to have features of Mycobacterium tuberculosis infection on chest radiographs. SNORD104 expression decreased during M. tuberculosis infection of primary human peripheral blood mononuclear cells (PBMC) and M2-like (P = 0.03) but not M1-like (P = 0.31) macrophages, suggesting that its downregulation in peripheral blood in TB is biologically relevant. Taken together, the results demonstrate that snoRNA and piRNA should be considered in addition to miRNA as biomarkers and pathogenesis factors in the various stages of TB.
Collapse
|
29
|
Zhou Z, Sun B, Huang S, Zhao L. Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis 2019; 10:503. [PMID: 31243263 PMCID: PMC6594938 DOI: 10.1038/s41419-019-1744-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
Circular RNAs (circRNAs), as a novel class of endogenously expressed non-coding RNAs (ncRNAs), have a high stability and often present tissue-specific expression and evolutionary conservation. Emerging evidence has suggested that circRNAs play an essential role in complex human pathologies. Notably, circRNAs, important gene modulators in the immune system, are strongly associated with the occurrence and development of autoimmune diseases. Here, we focus on the roles of circRNAs in immune cells and immune regulation, highlighting their potential as biomarkers and biological functions in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), primary biliary cholangitis (PBC), and psoriasis, aiming at providing new insights into the diagnosis and therapy of these diseases.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410000, China
| | - Shiqiong Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410000, China
| | - Lingling Zhao
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
30
|
Fu Y, Wang J, Qiao J, Yi Z. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med 2018; 23:1917-1925. [PMID: 30565391 PMCID: PMC6378186 DOI: 10.1111/jcmm.14093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022] Open
Abstract
The study was to characterize the expression profiles of circular RNAs (circRNAs) in peripheral blood mononuclear cells (PBMCs) from active tuberculosis (TB) patients and to investigate their function. Microarray was applied to detect circRNA expression and reverse transcription‐quantitative polymerase chain reaction was conducted to validate the microarray results. Meanwhile, receiver operating characteristic curve (ROC) curve was calculated to evaluate the predictive power of the selected circRNAs for TB diagnosis. Additionally, circRNA/miRNA interaction was predicted based on miRNA target prediction software, and gene ontology as well as Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict their biological function. In total, 171 circRNAs were found to be dysregulated in TB samples. Specifically, circRNA_103017, circRNA_059914 and circRNA_101128 were confirmed to be increased, while circRNA_062400 was decreased in TB samples. ROC analysis revealed that circRNA_103017 had potential value for TB diagnosis, followed by circRNA_059914 and circRNA_101128. Moreover, circRNA_101128 expression in TB samples was negatively correlated with the level of its possible target let‐7a and bioinformatics analysis showed that circRNA_101128 was potentially involved in MAPK and P13K‐Akt pathway possibly via modulation of let‐7a. Taken together, our results indicated that some dysregulated circRNAs were potential biomarkers for the diagnosis of TB and circRNA_101128‐let‐7a interplay may play considerable role in PBMCs response to Mtb infection.
Collapse
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Weifang, Shandong Province, China.,Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| | - Jindong Wang
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|