1
|
Tyagi A, Chandrasekaran B, Shukla V, Tyagi N, Sharma AK, Damodaran C. Nutraceuticals target androgen receptor-splice variants (AR-SV) to manage castration resistant prostate cancer (CRPC). Pharmacol Ther 2024; 264:108743. [PMID: 39491756 DOI: 10.1016/j.pharmthera.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Every year, prostate cancer is diagnosed in millions of men. The androgen receptor's (AR) unchecked activation is crucial in causing the development and progression of prostate cancer. Second-generation anti-androgen therapies, which primarily focus on targeting the Ligand Binding Domain (LBD) of AR, are effective for most patients. However, the adverse effects pose significant challenges in managing the disease. Furthermore, genetic mutations or the emergence of AR splice variants create an even more complex tumor environment, fostering resistance to these treatments. Natural compounds and their analogs, while showing a lower toxicity profile and a potential for selective AR splice variants inhibition, are constrained by their bioavailability and therapeutic efficacy. Nonetheless, recent breakthroughs in using natural derivatives to target AR and its splice variants have shown promise in treating chemoresistant castration-resistant prostate cancer (CRPC). This review will discuss the role of AR variants, particularly androgen receptor splice variant 7 (AR-V7), in CRPC and investigate the latest findings on how natural compounds and their derivatives target AR and AR splice variants.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Balaji Chandrasekaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Vaibhav Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Neha Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, College of Medicine, Penn State University, Hershey, PA 17033, United States
| | - Chendil Damodaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States.
| |
Collapse
|
2
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
3
|
He K, Wang T, Chen J, Huang X, Wang Z, Yang Z, Wang K, Zhao W, Jiang J, Zhao L. A Pegylated Liposome Loaded with Raddeanin A for Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:4007-4021. [PMID: 37496689 PMCID: PMC10368069 DOI: 10.2147/ijn.s420803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Raddeanin A (RA), a potent triterpenoid extracted from Anemone raddeana Regel, has a moderate therapeutic effect on prostate cancer (PCa), correlating with serious biological toxicity. Therefore, a RA-loaded PEGylated liposome drug delivery system was devised in this study. Methods Hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-Polyethyleneglycol-2000 (sodium salt) (DSPE-PEG2k), cholesterol (CHO), and RA were utilised to prepare a RA-loaded liposome (LRA) drug delivery system via the thin film hydration technique., The drug loading content was confirmed by high performance liquid chromatography. Dynamic light scattering was employed to evaluate the drug's particle size and stability. Methyl tetrazolium, colony formation, and Western blot (WB) were used in vitro to elucidate the inhibitory effect and mechanism of LRA on prostate cancer cells. Finally, xenograft model was used to confirm the tumor-inhibiting efficacy, clarify the mechanism, and determine the biosafety in mice. Results LRA has stable physicochemical properties and a diameter of 173.5 15.3 nm. LRA inhibited the growth of prostate cancer cells in a dose- and time-dependent manner. LRA can substantially reduce the expression of AR and HMGB1, induce apoptosis, regulate the expression of cell cycle-related proteins in vitro and in vivo. The results of the biosafety tests demonstrated that LRA effectively reduced the adverse effects of RA. Conclusion As a drug delivery system, LRA could effectively and safely inhibit the progression of prostate cancer.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weixin Zhao
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
4
|
Bialek J, Yankulov S, Kawan F, Fornara P, Theil G. Role of Nivolumab in the Modulation of PD-1 and PD-L1 Expression in Papillary and Clear Cell Renal Carcinoma (RCC). Biomedicines 2022; 10:biomedicines10123244. [PMID: 36552000 PMCID: PMC9776360 DOI: 10.3390/biomedicines10123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The expression and cellular mechanisms of programmed cell death-1 protein (PD-1) and its ligands (PD-L1 and PD-L2) in renal cancer cells are not well known. Here, we aimed to investigate the response of renal carcinoma subtypes to the immune checkpoint inhibitor nivolumab and its impact on related signaling pathways. All cell lines analyzed (clear cell (cc)RCC (Caki-1, RCC31) and papillary (p)RCC (ACHN, RCC30)) expressed PD-1 and both ccRCC cell lines, and RCC30 expressed PD-L1. Nivolumab treatment at increasing doses led to increased PD-1 levels in analyzed cells and resulted in aggressive behavior of pRCC but diminished this behavior in ccRCC. The analysis of PD-1/PD-L1-associated signaling pathways demonstrated increased AKT activity in Caki-1 and RCC30 cells but decreased activity in ACHN and RCC31 cells, while ribosomal protein S6 remained largely unchanged. Androgen receptors are related to RCC and were predominantly increased in RCC30 cells, which were the only cells that formed nivolumab-dependent spheroids. Finally, all cell lines exhibited a complex response to nivolumab treatment. Since the pRCC cells responded with increased tumorigenicity and PD-1/PD-L1 levels while ccRCC tumorigenicity was diminished, further studies are needed to improve nivolumab-based therapy for renal carcinoma subtypes, especially the identification of response-involved molecular pathways.
Collapse
|
5
|
Differential Expression of the Androgen Receptor, Splice Variants and Relaxin 2 in Renal Cancer. Life (Basel) 2021; 11:life11080731. [PMID: 34440475 PMCID: PMC8402134 DOI: 10.3390/life11080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The role of the androgen receptor (AR) in renal cell carcinoma (RCC) is unclear. We aimed to analyze the expression of AR and its splice variants (SVs) and their correlation with relaxin 2 (RLN2) and cytokines in RCC. Methods: We investigated the expression of RLN2 and AR variants in 25 clear cell RCC (ccRCC) and 9 papillary (pRCC) tumor tissues and the corresponding controls using quantitative PCR and serum RLN2, testosterone and cytokine levels in matched samples using ELISA and chemiluminescent immunometric assay, respectively. Results: ccRCC tissues but not pRCC tissues more frequently expressed AR and the SVs than did normal tissues. All pRCC samples expressed more AR than did ccRCC samples. The highest expression of all AR variants except AR-V12 was found in low-stage tumors, with dominant expression of AR-V7. In males in the ccRCC cohort, the expression of AR-FL, AR-V1 and AR-V3 was significantly correlated with that of RLN2. The secretion pattern of proinflammatory IL-6 was higher in ccRCC than in pRCC. Conclusions: The results highlight additional molecular differences between ccRCC and pRCC, suggesting the influence of external factors on the whole kidney or genetic predispositions to developing certain types of renal cancer, and may support further pathological analysis and studies of targeted hormone therapy.
Collapse
|
6
|
Shen X, Li L, He Y, Lv X, Ma J. Raddeanin A inhibits proliferation, invasion, migration and promotes apoptosis of cervical cancer cells via regulating miR-224-3p/Slit2/Robo1 signaling pathway. Aging (Albany NY) 2021; 13:7166-7179. [PMID: 33621954 PMCID: PMC7993697 DOI: 10.18632/aging.202574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Raddeanin A (RA), an active triterpenoid saponin extracted from the Anemone raddeana regel, plays an essential role in the suppression of many malignancies. We aimed to investigate the effects and potential mechanisms of RA on cervical cancer (CC). RA was used to treat CC cell lines (Hela and c-33A) for 24 h and 48 h. Then, the invasion, migration and cell cycle distribution of these two cell lines with RA treatment were respectively detected by transwell, wound healing and flow cytometry. Results revealed that RA significantly inhibited the invasion, migration, promoted the cell cycle arrest and apoptosis of Hela and c-33A cells. Moreover, RA was confirmed to activate the Slit2/Robo1 signaling, and bioinformatics analysis and luciferase reporter assay verified that miR-224-3p could target Slit2. Additionally, miR-224-3p overexpression reversed the inhibitory effect of RA on invasion and migration of CC cells, and it also restored the promoting effects of RA on cell cycle arrest and apoptosis. Lastly, miR-224-3p-upregulation inactivated the expression of Slit2 and Robo1 in RA-treated Hela and c-33A cells. These findings demonstrated that RA inhibits proliferation, invasion, migration and promotes apoptosis of CC cells through miR-224-3p/Slit2/Robo1 signaling pathway, which might guide the future studies or treatment of this disease.
Collapse
Affiliation(s)
- Xin Shen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an 71000, Shannxi Province, China
| | - Lingxia Li
- Department of Obstetrics and Gynecology, Fourth Military Medical University, Xi’an 710032, Shannxi Province, China
| | - Yuanyuan He
- Department of Obstetrics and Gynecology, Fourth Military Medical University, Xi’an 710032, Shannxi Province, China
| | - Xiaohui Lv
- Department of Obstetrics and Gynecology, Fourth Military Medical University, Xi’an 710032, Shannxi Province, China
| | - Jiajia Ma
- Department of Obstetrics and Gynecology, Fourth Military Medical University, Xi’an 710032, Shannxi Province, China
| |
Collapse
|
7
|
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules 2020; 25:E1035. [PMID: 32106609 PMCID: PMC7179125 DOI: 10.3390/molecules25051035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Natural compounds extracted from plants have gained immense importance in the fight against cancer cells due to their lesser toxicity and potential therapeutic effects. Raddeanin A (RA), an oleanane type triterpenoid is a major compound isolated from Anemone raddeana Regel. As an anticancer agent, RA induces apoptosis, cell cycle arrest, inhibits invasion, migration and angiogenesis in malignant cell lines as well as in preclinical models. In this systemic review, the pharmacological effects of RA and its underlying molecular mechanisms were carefully analyzed and potential molecular targets have been highlighted. The apoptotic potential of RA can be mediated through the modulation of Bcl-2, Bax, caspase-3, caspase-8, caspase-9, cytochrome c and poly-ADP ribose polymerase (PARP) cleavage. PI3K/Akt signaling pathway serves as the major molecular target affected by RA. Furthermore, RA can block cell proliferation through inhibition of canonical Wnt/β-catenin signaling pathway in colorectal cancer cells. RA can also alter the activation of NF-κB and STAT3 signaling pathways to suppress invasion and metastasis. RA has also exhibited promising anticancer potential against drug resistant cancer cells and can enhance the anticancer effects of several chemotherapeutic agents. Overall, RA may function as a promising compound in combating cancer, although further in-depth study is required under clinical settings to validate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | | | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
8
|
Xia H, Hu C, Bai S, Lyu J, Zhang BY, Yu X, Zhan Y, Zhao L, Dong Y. Raddeanin A down-regulates androgen receptor and its splice variants in prostate cancer. J Cell Mol Med 2019; 23:3656-3664. [PMID: 30905075 PMCID: PMC6484324 DOI: 10.1111/jcmm.14267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant progression of prostate cancer is a major cause of prostate cancer mortality, and increased expression and activity of the full-length and the splice variants of androgen receptor (AR) have been indicated to drive castration resistance. Consequently, there is an urgent need to develop agents that can target both the full-length and the splice variants of AR for more effective treatment of prostate cancer. In the present study, we showed that raddeanin A (RA), an oleanane-type triterpenoid saponin, suppresses the transcriptional activities of both the full-length and the splice variants of AR. This is attributable to their decreased expression as a result of RA induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further showed the potential of using RA to enhance the growth inhibitory efficacy of docetaxel, the first-line chemotherapy for prostate cancer. This study identifies RA as a new agent to target both the full-length and the splice variants of AR and provides a rationale for further developing RA for prostate cancer treatment.
Collapse
Affiliation(s)
- Hongyan Xia
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Cheng Hu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Shanshan Bai
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
- Department of Structural and Cellular BiologyTulane University School of MedicineTulane Cancer CenterNew OrleansLouisiana
| | - Jing Lyu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | | | - Xianghui Yu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Yang Zhan
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Lijing Zhao
- School of NursingJilin UniversityChangchunChina
| | - Yan Dong
- Department of Structural and Cellular BiologyTulane University School of MedicineTulane Cancer CenterNew OrleansLouisiana
| |
Collapse
|