1
|
Lin YC, Shih JY, Lin YW, Niu KC, Hong CS, Chen ZC, Pan SC, Chang TY, Kan WC, Chang WT. Hyperbaric Oxygen Therapy Improved Neovascularisation Following Limb Ischaemia-The Role of ROS Mitigation. J Cell Mol Med 2024; 28:e70310. [PMID: 39720917 DOI: 10.1111/jcmm.70310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy has emerged as a potential treatment, shown to enhance blood flow and angiogenesis. However, specific effects and mechanisms of HBO on limb ischaemia responding to a hypoxic environment remain largely unknown. We aimed to investigate the therapeutic potential of HBO in the treatment of limb ischaemia. Following limb ischaemia surgery, we evaluated the angiogenic capacity in wild-type C57BL/6J mice subjected to HBO treatment (100% oxygen at 3 ATA for 1 h/day for five consecutive days) compared to untreated controls. Notably, through laser Doppler perfusion imaging and CD31 staining mice receiving HBO postlimb ischaemia surgery exhibited significantly enhanced angiogenic capability and reduced ROS expression compared to nontreated counterparts. Additionally, in vitro experiments were conducted to investigate whether HBO could mitigate endothelial cell dysfunction and reactive oxygen species (ROS) production triggered by oxygen-glucose deprivation (OGD). HBO treatment rescued the impaired proliferation, migration and tube formation of endothelial cells following OGD. Mechanistically, HBO upregulated the expression of proangiogenic proteins, including vascular endothelial growth factor (VEGF), haem oxygenase-1 (HO-1), hypoxia-inducible factor 1 (HIF-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). Collectively, HBO treatment shows promise in augmenting the endogenous angiogenic potential and suppressing ROS levels in limb ischaemia.
Collapse
Affiliation(s)
- You-Cheng Lin
- Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jhih-Yuan Shih
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ko-Chi Niu
- Department of Hyperbaric Oxygen Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chon-Seng Hong
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yen Chang
- Department of Surgery, Section of Plastic and Reconstructive Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Radiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Wei-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Zhu Q, Liu X, Wu H, Yang C, Wang M, Chen F, Cui Y, Hao H, Hill MA, Liu Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front Cardiovasc Med 2023; 10:1125717. [PMID: 36860276 PMCID: PMC9968734 DOI: 10.3389/fcvm.2023.1125717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Exposure to fine particulate matter (PM) is a significant risk for cardiovascular diseases largely due to increased reactive oxygen species (ROS) production and inflammation. Caspase recruitment domain (CARD)9 is critically involved in innate immunity and inflammation. The present study was designed to test the hypothesis that CARD9 signaling is critically involved in PM exposure-induced oxidative stress and impaired recovery of limb ischemia. Methods and results Critical limb ischemia (CLI) was created in male wildtype C57BL/6 and age matched CARD9 deficient mice with or without PM (average diameter 2.8 μm) exposure. Mice received intranasal PM exposure for 1 month prior to creation of CLI and continued for the duration of the experiment. Blood flow and mechanical function were evaluated in vivo at baseline and days 3, 7, 14, and 21 post CLI. PM exposure significantly increased ROS production, macrophage infiltration, and CARD9 protein expression in ischemic limbs of C57BL/6 mice in association with decreased recovery of blood flow and mechanical function. CARD9 deficiency effectively prevented PM exposure-induced ROS production and macrophage infiltration and preserved the recovery of ischemic limb with increased capillary density. CARD9 deficiency also significantly attenuated PM exposure-induced increase of circulating CD11b+/F4/80+ macrophages. Conclusion The data indicate that CARD9 signaling plays an important role in PM exposure-induced ROS production and impaired limb recovery following ischemia in mice.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hao Wu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Chunlin Yang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine, Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
3
|
Wang C, Nistala R, Cao M, Li DP, Pan Y, Golzy M, Cui Y, Liu Z, Kang X. Repair of Limb Ischemia Is Dependent on Hematopoietic Stem Cell Specific-SHP-1 Regulation of TGF-β1. Arterioscler Thromb Vasc Biol 2023; 43:92-108. [PMID: 36412197 PMCID: PMC10037747 DOI: 10.1161/atvbaha.122.318205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-β1 signaling. TGF-β1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-β1. METHODS A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (μm) and area (μm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS After femoral artery ligation, TGF-β1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-β1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-β1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-β1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS HSPC-SHP-1-mediated regulation of TGF-β1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Ravi Nistala
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Nephrology (R.N.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Min Cao
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - De-Pei Li
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Yi Pan
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Mojgan Golzy
- Department of Family and Community Medicine - Biostatistics Unit, School of Medicine, University of Missouri, Columbia (M.G.)
| | - Yuqi Cui
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Cardiovascular Medicine (Y.C., Z.L.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Zhenguo Liu
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Cardiovascular Medicine (Y.C., Z.L.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - XunLei Kang
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| |
Collapse
|
4
|
Zhu Q, Hao H, Xu H, Fichman Y, Cui Y, Yang C, Wang M, Mittler R, Hill MA, Cowan PJ, Zhang G, He X, Zhou S, Liu Z. Combination of Antioxidant Enzyme Overexpression and N-Acetylcysteine Treatment Enhances the Survival of Bone Marrow Mesenchymal Stromal Cells in Ischemic Limb in Mice With Type 2 Diabetes. J Am Heart Assoc 2021; 10:e023491. [PMID: 34569277 PMCID: PMC8649154 DOI: 10.1161/jaha.121.023491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Therapy with mesenchymal stem cells remains a promising but challenging approach to critical limb ischemia in diabetes because of the dismal cell survival. Methods and Results Critical limb ischemia in type 2 diabetes mouse model was used to explore the impact of diabetic limb ischemia on the survival of bone marrow mesenchymal stromal cells (bMSCs). Inhibition of intracellular reactive oxygen species was achieved with concomitant overexpression of superoxide dismutase (SOD)‐1 and glutathione peroxidase‐1 in the transplanted bMSCs, and extracellular reactive oxygen species was attenuated using SOD‐3 overexpression and N‐acetylcysteine treatment. In vivo optical fluorescence imaging and laser Doppler perfusion imaging were used to track cell retention and determine blood flow in diabetic ischemic limb, respectively. Survival of the transplanted bMSCs was significantly decreased in diabetic ischemic limb compared with the control. In vitro study indicated that advanced glycation end products, not high glucose, significantly decreased the proliferation of bMSCs and increased their apoptosis associated with increased reactive oxygen species production and selective reduction of SOD‐1 and SOD‐3. In vivo study demonstrated that concomitant overexpression of SOD‐1, SOD‐3, and glutathione peroxidase‐1, or host treatment with N‐acetylcysteine, significantly enhanced in vivo survival of transplanted bMSCs, and improved critical limb ischemia in diabetic mice. Combination of triple antioxidant enzyme overexpression in bMSCs with host N‐acetylcysteine treatment further improved bMSC survival with enhanced circulatory and functional recovery from diabetic critical limb ischemia. Conclusions Simultaneous suppression of reactive oxygen species from transplanted bMSCs and host tissue could additively enhance bMSC survival in diabetic ischemic limb with increased therapeutic efficacy in diabetes.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO.,Department of Cardiology Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Huifang Xu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Yosef Fichman
- College of Agriculture, Food and Natural Resources University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| | - Ron Mittler
- College of Agriculture, Food and Natural Resources University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Michael A Hill
- Dalton Cardiovascular Research Center University of Missouri Columbia MO.,Department of Surgery University of Missouri School of MedicineChristopher S. Bond Life Sciences CenterUniversity of Missouri Columbia MO
| | - Peter J Cowan
- Department of Medicine University of Melbourne Australia.,Immunology Research Centre St. Vincent's Hospital Melbourne Australia
| | - Guangsen Zhang
- Institute of Molecular Hematopathy Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Xiaoming He
- Fischell Department of Bioengineering University of Maryland College Park MD
| | - Shenghua Zhou
- Department of Cardiology Second Xiangya Hospital Central South University Changsha City Hunan Province China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine Department of Medicine University of Missouri School of Medicine Columbia MO
| |
Collapse
|
5
|
N-acetylcysteine differentially regulates the populations of bone marrow and circulating endothelial progenitor cells in mice with limb ischemia. Eur J Pharmacol 2020; 881:173233. [PMID: 32492379 DOI: 10.1016/j.ejphar.2020.173233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are important to tissue repair and regeneration especially after ischemic injury, and very heterogeneous in phenotypes and biological features. Reactive oxygen species are involved in regulating EPC number and function. N-acetylcysteine (NAC) inhibits ischemia-induced reactive oxygen species formation and promotes ischemic limb recovery. This study was to evaluate the effect of NAC on EPC subpopulations in bone marrow (BM) and blood in mice with limb ischemia. Limb ischemia was induced by femoral artery ligation in male C57BL/6 mice with or without NAC treatment. EPC subpopulations, intracellular reactive oxygen species production, cell proliferation and apoptosis in BM and blood cells were analyzed at baseline, day 3 (acute ischemia) and 21 (chronic) after ligation. c-Kit+/CD31+, Sca-1+/Flk-1+, CD34+/CD133+, and CD34+/Flk-1+ were used to define EPC subpopulations. Limb blood flow, function, muscle structure, and capillary density were evaluated with laser Doppler perfusion imaging, treadmill test, and immunohistochemistry, respectively, at day 3, 7, 14 and 21 post ischemia. Reactive oxygen species production in circulating and BM mononuclear cells and EPCs populations were significantly increased in BM and blood in mice with acute and chronic ischemia. NAC treatment effectively blocked ischemia-induced reactive oxygen species production in circulating and BM mononuclear cells, and selectively increased EPC population in circulation, not BM, with preserved proliferation in mice with chronic ischemia, and enhanced limb blood flow and function recovery, while preventing acute ischemia-induced increase in BM and circulating EPCs. These data demonstrated that NAC selectively enhanced circulating EPC population in mice with chronic limb ischemia.
Collapse
|
6
|
Rethineswaran VK, Kim YJ, Jang WB, Ji ST, Kang S, Kim DY, Park JH, Van LTH, Giang LTT, Ha JS, Yun J, Lee DH, Yu SN, Park SG, Ahn SC, Kwon SM. Enzyme-Aided Extraction of Fucoidan by AMG Augments the Functionality of EPCs through Regulation of the AKT/Rheb Signaling Pathway. Mar Drugs 2019; 17:md17070392. [PMID: 31277207 PMCID: PMC6669526 DOI: 10.3390/md17070392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.
Collapse
Affiliation(s)
- Vinoth Kumar Rethineswaran
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yeon-Ju Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Woong Bi Jang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung Taek Ji
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Songhwa Kang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Da Yeon Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Park
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Le Thi Hong Van
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ly Thanh Truong Giang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong Seong Ha
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jisoo Yun
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 46241, Korea
| | - Sun-Nyoung Yu
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sul-Gi Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Soon-Cheol Ahn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sang-Mo Kwon
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
7
|
Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019; 23:4019-4029. [PMID: 30973215 PMCID: PMC6533526 DOI: 10.1111/jcmm.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xin Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xingyi Que
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuan Xiao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jia Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaoyun Xie
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jie Tian
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|