1
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
2
|
Yuan F, Bai K, Hou Y, Zou X, Sun J. Small Molecule Cocktails Promote Fibroblast-to-Leydig-like Cell Conversion for Hypogonadism Therapy. Pharmaceutics 2023; 15:2456. [PMID: 37896216 PMCID: PMC10610100 DOI: 10.3390/pharmaceutics15102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Male hypogonadism arises from the inadequate production of testosterone (T) by the testes, primarily due to Leydig cell (LC) dysfunction. Small molecules possess several advantages, including high cell permeability, ease of synthesis, standardization, and low effective concentration. Recent investigations have illuminated the potential of small molecule combinations to facilitate direct lineage reprogramming, removing the need for transgenes by modulating cellular signaling pathways and epigenetic modifications. In this study, we have identified a specific cocktail of small molecules, comprising forskolin, DAPT, purmorphamine, 8-Br-cAMP, 20α-hydroxycholesterol, and SAG, capable of promoting the conversion of fibroblasts into Leydig-like cells (LLCs). These LLCs expressed key genes involved in testosterone synthesis, such as Star, Cyp11a1, and Hsd3b1, and exhibited the ability to secrete testosterone in vitro. Furthermore, they successfully restored serum testosterone levels in testosterone-castrated mice in vivo. The small molecule cocktails also induced alterations in the epigenetic marks, specifically H3K4me3, and enhanced chromosomal accessibility on core steroidogenesis genes. This study presents a reliable methodology for generating Leydig-like seed cells that holds promise as a novel therapeutic approach for hypogonadism.
Collapse
Affiliation(s)
| | | | | | | | - Jie Sun
- Department of Urology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China; (F.Y.); (K.B.); (Y.H.); (X.Z.)
| |
Collapse
|
3
|
Jin C, Xu G. Study on the Promotion of hADSCs Migration and Chemotaxis by SDF-1. Asia Pac J Ophthalmol (Phila) 2023; 12:303-309. [PMID: 37171133 DOI: 10.1097/apo.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the chemotaxis effect of stromal cell-derived factor-1 (SDF-1) on human adipose-derived stem cells (hADSCs). METHODS A lentivirus vector with the enhanced green fluorescent protein gene was constructed and transfected to hADSCs. A control group and an SDF-1 induction group were set to estimate the efficacy of SDF-1 in promoting hADSCs chemotaxis and migration. RESULTS After 7 days of infection with hADSCs by enhanced green fluorescent protein lentivirus, the positive rate of fluorescence expression detected by flow cytometry was 100%. After the addition of SDF-1 induction, the invasion ability of hADSCs was enhanced. CONCLUSIONS SDF-1 can promote hADSCs migration and chemotaxis, which may play a role in stem cell transplantation.
Collapse
Affiliation(s)
- Chen Jin
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Ophthalmology, Fuzhou, China
| | | |
Collapse
|
4
|
Wang MX, Peng ZG. 17β-hydroxysteroid dehydrogenases in the progression of nonalcoholic fatty liver disease. Pharmacol Ther 2023; 246:108428. [PMID: 37116587 DOI: 10.1016/j.pharmthera.2023.108428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic and a major public health problem, with a prevalence of approximately 25%. The pathogenesis of NAFLD is complex and may be affected by the environment and susceptible genetic factors, resulting in a highly variable disease course and no approved drugs in the clinic. Notably, 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), which belongs to the 17β-hydroxysteroid dehydrogenase superfamily (HSD17Bs), is closely related to the clinical outcome of liver disease. HSD17Bs consists of fifteen members, most related to steroid and lipid metabolism, and may have the same biological function as HSD17B13. In this review, we highlight recent advances in basic research on the functional activities, major substrates, and key roles of HSD17Bs in the progression of NAFLD to develop innovative anti-NAFLD drugs targeting HSD17Bs.
Collapse
Affiliation(s)
- Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Huang H, Zhang W, Zhang J, Zhao A, Jiang H. Epigenome editing based on CRISPR/dCas9 p300 facilitates transdifferentiation of human fibroblasts into Leydig-like cells. Exp Cell Res 2023; 425:113551. [PMID: 36914062 DOI: 10.1016/j.yexcr.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Recently, Leydig cell (LCs) transplantation has a promising potential to treat male hypogonadism. However, the scarcity of seed cells is the actual barrier impeding the application of LCs transplantation. Utilizing the cutting-edge CRISPR/dCas9VP64 technology, human foreskin fibroblasts (HFFs) were transdifferentiated into Leydig-like cells(iLCs) in previous study, but the efficiency of transdifferentiation is not very satisfactory. Therefore, this study was conducted to further optimize the CRISPR/dCas9 system for obtaining sufficient iLCs. First, the stable CYP11A1-Promoter-GFP-HFFs cell line was established by infecting HFFs with CYP11A1-Promoter-GFP lentiviral vectors, and then co-infected with dCas9p300 and the combination of sgRNAs targeted to NR5A1, GATA4 and DMRT1. Next, this study adopted quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence to determine the efficiency of transdifferentiation, the generation of testosterone, the expression levels of steroidogenic biomarkers. Moreover, we utilized chromatin immuno-precipitation (ChIP) followed by quantitative polymerase chain reaction (ChIP-qPCR) to measure the levels of acetylation of targeted H3K27. The results revealed that advanced dCas9p300 facilitated generation of iLCs. Moreover, the dCas9p300-mediated iLCs significantly expressed the steroidogenic biomarkers and produced more testosterone with or without LH treatment than the dCas9VP64-mediated. Additionally, preferred enrichment in H3K27ac at the promoters was detected only with dCas9p300 treatment. The data provided here imply that the improved version of dCas9 can aid in the harvesting of iLCs, and will provide sufficient seed cells for cell transplantation treatment of androgen deficiency in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China.
| | - Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Anshun Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
6
|
Wang J, Ma S, Wu Q, Xu Q, Wang J, Zhang R, Bai L, Li L, Liu H. Effects of testis testosterone deficiency on gene expression in the adrenal gland and skeletal muscle of ducks. Br Poult Sci 2023. [PMID: 36735924 DOI: 10.1080/00071668.2023.2176741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Testosterone has an anabolic effect on skeletal muscle. The testes produce most of the testosterone in vivo, while the adrenal glands contribute smaller amounts. When testis testosterone is deficient the adrenal gland increases steroid hormone synthesis, which is referred to as compensatory testicular adaptation (CTA).2. To reveal the effects of testis testosterone deficiency on adrenal steroid hormones synthesis and skeletal muscle development, gene expression related to adrenal steroid hormones synthesis and skeletal muscle development were determined by RNA-seq.3. The results showed that castrating male ducks had significant effects on their body weight but no significant impact on cross-sectional area (CSA) or density of pectoral muscle fibres. In skeletal muscle protein metabolism, expression levels of the catabolic gene atrogin1/MAFbx and the anabolic gene eEF2 were significantly higher, with concomitant increases after castration. The adrenal glands' alteration of the steroid hormone 11β-hydroxylase (CYP11B1) was significantly lower following castration.4. Expression pattern analysis showed that the adrenal glands' glucocorticoid receptor (NR3C1/GR) had a potential regulatory relationship with the skeletal muscle-related genes (Pax7, mTOR, FBXO32, FOXO3, and FOXO4).5. The data showed that castration affected muscle protein metabolism, adrenal steroid and testosterone synthesis. In addition, it was speculated that, after castration, steroid hormones produced by the adrenal gland could have a compensatory effect, which might mediate the changes in skeletal muscle protein metabolism and development.
Collapse
Affiliation(s)
- J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - S Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - R Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
7
|
Li Z, Fan Y, Xie C, Liu J, Guan X, Li S, Huang Y, Zeng R, Chen H, Su Z. High-fidelity reprogramming into Leydig-like cells by CRISPR activation and paracrine factors. PNAS NEXUS 2022; 1:pgac179. [PMID: 36714877 PMCID: PMC9802085 DOI: 10.1093/pnasnexus/pgac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
Androgen deficiency is a common medical conditions that affects males of all ages. Transplantation of testosterone-producing cells is a promising treatment for male hypogonadism. However, getting a cell source with the characteristics of Leydig cells (LCs) is still a challenge. Here, a high-efficiency reprogramming of skin-derived fibroblasts into functional Leydig-like cells (LLCs) based on epigenetic mechanism was described. By performing an integrated analysis of genome-wide DNA methylation and transcriptome profiling in LCs and fibroblasts, the potentially epigenetic-regulating steroidogenic genes and signaling pathways were identified. Then by using CRISPR/dCas9 activation system and signaling pathway regulators, the male- or female-derived fibroblasts were reprogrammed into LLCs with main LC-specific traits. Transcriptomic analysis further indicated that the correlation coefficients of global genes and transcription factors between LLCs and LCs were higher than 0.81 and 0.96, respectively. After transplantation in the testes of hypogonadal rodent models, LLCs increased serum testosterone concentration significantly. In type 2 diabetic rats model, LLCs which were transplanted in armpit, have the capability to restore the serum testosterone level and improve the hyperglycemia status. In conclusion, our approach enables skin-derived fibroblasts reprogramming into LLCs with high fidelity, providing a potential cell source for the therapeutics of male hypogonadism and metabolic-related comorbidities.
Collapse
Affiliation(s)
| | | | | | - Jierong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- To whom correspondence should be addressed:
| | | | - Zhijian Su
- To whom correspondence should be addressed:
| |
Collapse
|
8
|
Jiang YL, Wang ZL, Fan ZX, Wu MJ, Zhang Y, Ding W, Huang YZ, Xie HQ. Human adipose-derived stem cell-loaded small intestinal submucosa as a bioactive wound dressing for the treatment of diabetic wounds in rats. BIOMATERIALS ADVANCES 2022; 136:212793. [PMID: 35929325 DOI: 10.1016/j.bioadv.2022.212793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Chronic nonhealing wounds are one of the most common and serious complications of diabetes, which can lead to disability of patients. Adipose-derived stem cells (ADSCs) have emerged as a promising tool for skin wound healing, but the therapeutic potential depends considerably on the cell delivery system. Small intestinal submucosa (SIS) is an extracellular matrix-based membranous scaffold with outstanding repair potential for skin wounds. In this study, we first fabricated a bioactive wound dressing, termed the SIS+ADSCs composite, by using human ADSCs as the seed cell and porcine SIS as the cell delivery vehicle. Then, we systematically investigated, for the first time, the healing potential of this wound dressing in a rat model of type 2 diabetes. In vitro studies revealed that SIS provided a favorable microenvironment for ADSCs and significantly promoted the expression of growth factors critical for chronic wound healing. After implantation in the full-thickness skin wounds of diabetic rats, the SIS+ADSCs composite showed a higher wound healing rate and wound healing quality than those in the PBS, ADSCs, and SIS groups. Along with the ability to modulate the polarization of macrophages in vivo, the SIS+ADSCs composite was potent at promoting wound angiogenesis, reepithelialization, and skin appendage regeneration. Taken together, these results indicate that the SIS+ADSCs composite has good therapeutic potential and high translational value for diabetic wound treatment.
Collapse
Affiliation(s)
- Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhao-Xin Fan
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Ming-Jun Wu
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Pan LC, Hang NLT, Colley MM, Chang J, Hsiao YC, Lu LS, Li BS, Chang CJ, Yang TS. Single Cell Effects of Photobiomodulation on Mitochondrial Membrane Potential and Reactive Oxygen Species Production in Human Adipose Mesenchymal Stem Cells. Cells 2022; 11:cells11060972. [PMID: 35326423 PMCID: PMC8946980 DOI: 10.3390/cells11060972] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Photobiomodulation (PBM) has recently emerged in cellular therapy as a potent alternative in promoting cell proliferation, migration, and differentiation during tissue regeneration. Herein, a single-cell near-infrared (NIR) laser irradiation system (830 nm) and the image-based approaches were proposed for the investigation of the modulatory effects in mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), and vesicle transport in single living human adipose mesenchymal stem cells (hADSCs). The irradiated-hADSCs were then stained with 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) and Rhodamine 123 (Rh123) to represent the ΔΨm and ROS production, respectively, with irradiation in the range of 2.5–10 (J/cm2), where time series of bright-field images were obtained to determine the vesicle transport phenomena. Present results showed that a fluence of 5 J/cm2 of PBM significantly enhanced the ΔΨm, ROS, and vesicle transport phenomena compared to the control group (0 J/cm2) after 30 min PBM treatment. These findings demonstrate the efficacy and use of PBM in regulating ΔΨm, ROS, and vesicle transport, which have potential in cell proliferation, migration, and differentiation in cell-based therapy.
Collapse
Affiliation(s)
- Li-Chern Pan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
| | - Nguyen-Le-Thanh Hang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
| | - Mamadi M.S Colley
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Bing-Sian Li
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
| | - Cheng-Jen Chang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
- Department of Plastic Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-J.C.); (T.-S.Y.); Tel.: +886-227-372-181 (ext. 3381) (C.-J.C.); +886-227-361-661 (ext. 5206) (T.-S.Y.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; (L.-C.P.); (N.-L.-T.H.); (M.M.C.); (Y.-C.H.); (B.-S.L.)
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-J.C.); (T.-S.Y.); Tel.: +886-227-372-181 (ext. 3381) (C.-J.C.); +886-227-361-661 (ext. 5206) (T.-S.Y.)
| |
Collapse
|
10
|
Ishida T, Koyanagi-Aoi M, Yamamiya D, Onishi A, Sato K, Uehara K, Fujisawa M, Aoi T. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells. Endocrinology 2021; 162:6373541. [PMID: 34549267 DOI: 10.1210/endocr/bqab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 12/26/2022]
Abstract
Late-onset hypogonadism (LOH) syndrome, due to a partial lack of testosterone, decreases the quality of life of older men. Testosterone is mainly secreted by Leydig cells in the testes. Leydig cell transplantation is expected to be a promising alternative to conventional testosterone replacement therapy for LOH syndrome. We herein report a simple and robust protocol for directed differentiation of human induced pluripotent stem cells (hiPSCs) into Leydig-like cells by doxycycline-inducible overexpression of NR5A1 and treatment with a combination of 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) and forskolin. The differentiated cells expressed the steroidogenic enzyme genes STAR, CYP11A1, CYP17A1, and HSD3B2 and the specific markers of adult Leydig cells HSD17B3, INSL3, and LHCGR. Furthermore, we confirmed the secretion of functional testosterone from the cells into the culture supernatant by a testosterone-sensitive cell proliferation assay. These findings showed that the hiPSCs were able to be differentiated into Leydig-like cells, supporting the expectation that hiPSC-derived Leydig-like cells can be novel tools for treating LOH syndrome.
Collapse
Affiliation(s)
- Takaki Ishida
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| | - Daisuke Yamamiya
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | - Atsushi Onishi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Katsuya Sato
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| |
Collapse
|
11
|
Pachernegg S, Georges E, Ayers K. The Desert Hedgehog Signalling Pathway in Human Gonadal Development and Differences of Sex Development. Sex Dev 2021; 16:98-111. [PMID: 34518472 DOI: 10.1159/000518308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
While the Hedgehog signalling pathway is implicated in numerous developmental processes and maladies, variants in the Desert Hedgehog (DHH) ligand underlie a condition characterised by 46,XY gonadal dysgenesis with or without peripheral neuropathy. We discuss here the role and regulation of DHH and its signalling pathway in the developing gonads and examine the current understanding of how disruption to this pathway causes this difference of sex development (DSD) in humans.
Collapse
Affiliation(s)
- Svenja Pachernegg
- Reproductive Development Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Georges
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katie Ayers
- Reproductive Development Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Feng X, Xia K, Ke Q, Deng R, Zhuang J, Wan Z, Luo P, Wang F, Zang Z, Sun X, Xiang AP, Tu X, Gao Y, Deng C. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency. Mol Cell Endocrinol 2021; 519:111039. [PMID: 32980418 DOI: 10.1016/j.mce.2020.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that the transplantation of alginate-poly-ʟ-lysine-alginate (APA)-encapsulated rat Leydig cells (LCs) provides a promising approach for treating testosterone deficiency (TD). Nevertheless, LCs have a limited capacity to proliferate, limiting the efficacy of LC transplantation therapy. Here, we established an efficient differentiation system to obtain functional Leydig-like cells (LLCs) from human stem Leydig cells (hSLCs). Then we injected APA-encapsulated LLCs into the abdominal cavities of castrated mice without an immunosuppressor. The APA-encapsulated cells survived and partially restored testosterone production for 90 days in vivo. More importantly, the transplantation of encapsulated LLCs ameliorated the symptoms of TD, such as fat accumulation, muscle atrophy and adipocyte accumulation in bone marrow. Overall, these results suggest that the transplantation of encapsulated LLCs is a promising new method for testosterone supplementation with potential clinical applications in TD.
Collapse
Affiliation(s)
- Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; KingMed Center for Clinical Laboratory CO., LTD, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Li X, Xu A, Li K, Zhang J, Li Q, Zhao G, Zhang Y, Yuan H, Guo Y, Lin P, Huang L. CXCR4-SF1 bifunctional adipose-derived stem cells benefit for the treatment of Leydig cell dysfunction-related diseases. J Cell Mol Med 2020; 24:4633-4645. [PMID: 32181567 PMCID: PMC7176872 DOI: 10.1111/jcmm.15128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023] Open
Abstract
Stem cell transplantation is a candidate method for the treatment of Leydig cell dysfunction-related diseases. However, there are still many problems that limit its clinical application. Here, we report the establishment of CXCR4-SF1 bifunctional adipose-derived stem cells (CXCR4-SF1-ADSCs) and their reparative effect on Leydig cell dysfunction. CD29+ CD44+ CD34- CD45- ADSCs were isolated from adipose tissue and purified by fluorescence-activated cell sorting (FACS). Infection with lentiviruses carrying the CXCR4 and SF1 genes was applied to construct CXCR4-SF1-ADSCs. The CXCR4-SF1-ADSCs exhibited enhanced migration and had the ability to differentiate into Leydig-like cells in vitro. Furthermore, the bifunctional ADSCs were injected into BPA-mediated Leydig cell damage model mice via the tail vein. We found that the CXCR4-SF1-ADSCs were capable of homing to the injured testes, differentiating into Leydig-like cells and repairing the deficiency in reproductive function caused by Leydig cell dysfunction. Moreover, we investigated the mechanism underlying SF1-mediated differentiation and testosterone synthesis in Leydig cells, and the B-box and SPRY Domain Containing Protein (BSPRY) gene was proposed to be involved in this process. This study provides insight into the treatment of Leydig cell dysfunction-related diseases.
Collapse
Affiliation(s)
- Xue Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ao Xu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Gang Zhao
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Yuan
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yafei Guo
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Chen P, Zirkin BR, Chen H. Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications. Endocr Rev 2020; 41:5610863. [PMID: 31673697 PMCID: PMC7753054 DOI: 10.1210/endrev/bnz013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Androgen deficiency (hypogonadism) affects males of all ages. Testosterone replacement therapy (TRT) is effective in restoring serum testosterone and relieving symptoms. TRT, however, is reported to have possible adverse effects in part because administered testosterone is not produced in response to the hypothalamic-pituitary-gonadal (HPG) axis. Progress in stem cell biology offers potential alternatives for treating hypogonadism. Adult Leydig cells (ALCs) are generated by stem Leydig cells (SLCs) during puberty. SLCs persist in the adult testis. Considerable progress has been made in the identification, isolation, expansion and differentiation of SLCs in vitro. In addition to forming ALCs, SLCs are multipotent, with the ability to give rise to all 3 major cell lineages of typical mesenchymal stem cells, including osteoblasts, adipocytes, and chondrocytes. Several regulatory factors, including Desert hedgehog and platelet-derived growth factor, have been reported to play key roles in the proliferation and differentiation of SLCs into the Leydig lineage. In addition, stem cells from several nonsteroidogenic sources, including embryonic stem cells, induced pluripotent stem cells, mature fibroblasts, and mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord have been transdifferentiated into Leydig-like cells under a variety of induction protocols. ALCs generated from SLCs in vitro, as well as Leydig-like cells, have been successfully transplanted into ALC-depleted animals, restoring serum testosterone levels under HPG control. However, important questions remain, including: How long will the transplanted cells continue to function? Which induction protocol is safest and most effective? For translational purposes, more work is needed with primate cells, especially human.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Haolin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Chen Y, Li C, Ji W, Wang L, Chen X, Zhao S, Xu Z, Ge R, Guo X. Differentiation of human adipose derived stem cells into Leydig-like cells with molecular compounds. J Cell Mol Med 2019; 23:5956-5969. [PMID: 31293077 PMCID: PMC6714210 DOI: 10.1111/jcmm.14427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 01/06/2023] Open
Abstract
Leydig cells (LCs) are the primary source of testosterone in the testis, and testosterone deficiency caused by LC functional degeneration can lead to male reproductive dysfunction. LC replacement transplantation is a very promising approach for this disease therapy. Here, we report that human adipose derived stem cells (ADSCs) can be differentiated into Leydig-like cells using a novel differentiation method based on molecular compounds. The isolated human ADSCs expressed positive CD29, CD44, CD59 and CD105, negative CD34, CD45 and HLA-DR using flow cytometry, and had the capacity of adipogenic and osteogenic differentiation. ADSCs derived Leydig-like cells (ADSC-LCs) acquired testosterone synthesis capabilities, and positively expressed LC lineage-specific markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, CYP17A1, HSD3B1 and HSD17B3 as well as negatively expressed ADSC specific markers CD29, CD44, CD59 and CD105. When ADSC-LCs labelled with lipophilic red dye (PKH26) were injected into rat testes which were selectively eliminated endogenous LCs using ethylene dimethanesulfonate (EDS, 75 mg/kg), the transplanted ADSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of blood testosterone levels and testis weights. These results demonstrated that ADSCs could be differentiated into Leydig-like cells by few defined molecular compounds, which might lay the foundation for further clinical application of ADSC-LC transplantation therapy.
Collapse
Affiliation(s)
- Yong Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Chao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weiping Ji
- Department of Gastroenetrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Long Wang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianwu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Shenzhi Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Zhangye Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Renshan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|