1
|
Lu WL, Kuang H, Gu J, Hu X, Chen B, Fan Y. GAP-43 targeted indocyanine green-loaded near-infrared fluorescent probe for real-time mapping of perineural invasion lesions in pancreatic cancer in vivo. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102671. [PMID: 37054805 DOI: 10.1016/j.nano.2023.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVE Perineural invasion (PNI) is associated with local recurrence, distant metastasis, and a poor prognosis in pancreatic cancer. However, rare attempt was made to identified the PNI intraoperative. To facilitate precise R0 excision of the tumor, we planned to develop a fluorescent probe for intraoperative imaging of the PNI using GAP-43 as the target and indocyanine green (ICG) as the carrier. METHODS The probe was created by binding peptide antibody and ICG. Its targeting was tested in vitro and in vivo using a co-culture model of PC12 and tumor cells to create an in vitro neural invasion model and a mouse sciatic nerve invasion model. The small animal imaging system and surgical navigation system confirmed the probe's potential clinical applicability. The sciatic nerve damage model was created to confirm the probe's targeting. RESULTS We used the pancreatic cancer samples and the public database to confirm that GAP-43 was preferentially overexpressed in pancreatic cancer, particularly in PNI. PC12 cells showed high GAP-43RA-PEG-ICG probe-specific absorption after being co-cultured with tumor cells in vitro. In the sciatic nerve invasion experiment, animals in probe group displayed a significantly stronger fluorescence signal at the PNI compared to ICG-NP and the contralateral normal nerves groups. Although only 60 % of mice appeared to have R0 resections by the naked eye, small animal imaging systems and surgical fluorescence navigation systems could remove the tumor with R0 precision. The injury model used in the probe imaging experimental trials demonstrated that the probe was specifically targeted to the injured nerve, regardless of whether the injury was infiltrated by a tumor or physical. CONCLUSION We developed the GAP-43Ra-ICG-PEG, an active-targeting near-infrared fluorescent (NIF) probe, that specifically binds to GAP-43-positive neural cells in an in vitro model of PNI. The probe efficiently visualized PNI lesions in pancreatic cancer in preclinical models, opening up new possibilities for NIRF-guided pancreatic surgery, particularly for PNI patients.
Collapse
Affiliation(s)
- Wen Liang Lu
- The Department of General Surgery & Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Thyroid and breast surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Houfang Kuang
- Department of General Surgery, Wuhan Children(,) hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Jianyou Gu
- The Department of General Surgery & Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaojun Hu
- The Department of General Surgery & Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Hepatobiliary Surgery, The Fifth Affifiliated Hospital of Southern Medical University, Guangzhou 510920, China
| | - Bo Chen
- Department of Thyroid and breast surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Yingfang Fan
- The Department of General Surgery & Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
2
|
Yang Y, Shi W, Li C, Li L, Li J, Chen Y, Shi Q, Xie Z, Wang M, Zhang H, Zhao X, Chen Y, Li R, Liu S, Ye Z, Zhang L, Liang X. Growth associated protein 43 deficiency promotes podocyte injury by activating the calmodulin/calcineurin pathway under hyperglycemia. Biochem Biophys Res Commun 2023; 656:104-114. [PMID: 36963347 DOI: 10.1016/j.bbrc.2023.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
Podocyte injury is a crucial factor in the pathogenesis of diabetic kidney disease (DKD), and finding potential therapeutic interventions that can mitigate podocyte injury holds significant clinical relevance. This study was to elucidate the role of growth associated protein-43(Gap43) in podocyte injury of high glucose (HG). We confirmed the expression of Gap43 in human glomerulus and found that Gap43 expression was downregulated in podocytes of patients with DKD and HG-treated podocytes in vitro. Gap43 knockdown in podocytes promoted podocyte apoptosis, increased migration ability and decreased nephrin expression, while overexpression of Gap43 markedly suppressed HG-induced injury. Moreover, the increased expression and activity of calcineurin (CaN) were also abrogated by overexpression Gap43 in HG. Pretreatment with a typical CaN inhibitor FK506 in Gap43 knockdown podocytes restored the injury. Mechanistically, co-immunoprecipitation experiments suggested that Gap43 could bind to calmodulin (CaM). Pull-down assay further demonstrated that Gap43 and CaM directly interacts with each other via amino acids 30-52 of Gap43 and amino acids 133-197 of CaM. In addition, we also identified Pax5 as potential transcription inhibitor factor mediating Gap43 expression. In conclusion, the study indicated that the Gap43/CaM-CaN pathway may be exploited as a promising therapeutic target for protecting against podocyte injury in high glucose.
Collapse
Affiliation(s)
- Yan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wanxin Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Cuili Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Luan Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jiaying Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yingwen Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qingying Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiyong Xie
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Mengjie Wang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Liu Z, Zhao E, Li H, Lin D, Huang C, Zhou Y, Zhang Y, Pan X, Liao W, Li F. Identification and validation of a novel stress granules-related prognostic model in colorectal cancer. Front Genet 2023; 14:1105368. [PMID: 37205121 PMCID: PMC10187888 DOI: 10.3389/fgene.2023.1105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aims: A growing body of evidence demonstrates that Stress granules (SGs), a non-membrane cytoplasmic compartments, are important to colorectal development and chemoresistance. However, the clinical and pathological significance of SGs in colorectal cancer (CRC) patients is unclear. The aim of this study is to propose a new prognostic model related to SGs for CRC on the basis of transcriptional expression. Main methods: Differentially expressed SGs-related genes (DESGGs) were identified in CRC patients from TCGA dataset by limma R package. The univariate and Multivariate Cox regression model was used to construct a SGs-related prognostic prediction gene signature (SGPPGS). The CIBERSORT algorithm was used to assess cellular immune components between the two different risk groups. The mRNA expression levels of the predictive signature from 3 partial response (PR) and 6 stable disease (SD) or progress disease (PD) after neoadjuvant therapy CRC patients' specimen were examined. Key findings: By screening and identification, SGPPGS comprised of four genes (CPT2, NRG1, GAP43, and CDKN2A) from DESGGs is established. Furthermore, we find that the risk score of SGPPGS is an independent prognostic factor to overall survival. Notably, the abundance of immune response inhibitory components in tumor tissues is upregulated in the group with a high-risk score of SGPPGS. Importantly, the risk score of SGPPGS is associated with the chemotherapy response in metastatic colorectal cancer. Significance: This study reveals the association between SGs related genes and CRC prognosis and provides a novel SGs related gene signature for CRC prognosis prediction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengtian Li
- *Correspondence: Fengtian Li, ; Wenting Liao,
| |
Collapse
|
4
|
Overexpression of NNMT in Glioma Aggravates Tumor Cell Progression: An Emerging Therapeutic Target. Cancers (Basel) 2022; 14:cancers14143538. [PMID: 35884600 PMCID: PMC9316405 DOI: 10.3390/cancers14143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Glioma is one of the most common intracranial malignancies and is incurable due to strong aggressiveness and resistance to radiotherapy and chemotherapy. The lack of effective therapeutic targets is a major problem in current treatment. In the present study, we found that nicotinamide N-methyltransferase (NNMT) is a key factor influencing the occurrence and development of glioma. High NNMT expression in glioma is a predictor of short overall survival and poor patient outcome. NNMT knockdown reduced the volume of mice xenograft glioma and the viability of glioma cells. Additionally, overexpression of NNMT epigenetically silenced GAP43 through DNA methylation, histone methylation, and deacetylation modification processes. GAP43 can inhibit the formation of microtubules in tumor and intertumor cell network connections and induce apoptosis through the SIRT1 signaling pathway. Therefore, NNMT could be a potential candidate for the clinical diagnosis and treatment of glioma. Abstract Purpose: Increasing evidence has revealed that nicotinamide N-methyltransferase (NNMT) is a key factor influencing the prognosis of tumors. The present study aimed to investigate the role of NNMT in glioma and to elucidate the associated functional mechanisms. Methods: Clinical samples were analyzed by immunohistochemical staining and Western blotting to evaluate NNMT expression in glioma and normal brain tissues. The correlation between NNMT expression and glioma was analyzed using the Cancer Genome Atlas (TCGA) database. Additionally, NNMT was knocked down in two types of glioma cells, U87 and U251, to evaluate the invasive ability of these cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate NNMT knockdown in the cells. Furthermore, ELISA was used to determine the balance between nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide hydrogen (NAD/NADH ratio), which verified the altered methylation patterns in the cells. The glioma xenograft mouse models were used to verify the regulatory role of NNMT, GAP43, and SIRT1. Results: Analysis based on our clinical glioma samples and TCGA database revealed that overexpression of NNMT was associated with poor prognosis of patients. Knockdown of NNMT reduced the invasive ability of glioma cells, and downregulation of its downstream protein GAP43 occurred due to altered cellular methylation caused by NNMT overexpression. Gene Set Enrichment Analysis confirmed that NNMT modulated the NAD-related signaling pathway and showed a negative association between NNMT and SIRT1. Moreover, the regulatory roles of NNMT, GAP43, and SIRT1 were confirmed in glioma xenograft mouse models. Conclusion: Overexpression of NNMT causes abnormal DNA methylation through regulation of the NAD/NADH ratio, which in turn leads to the downregulation of GAP43 and SIRT1, eventually altering the biological behavior of tumor cells.
Collapse
|
5
|
Cao JZ, Nie G, Hu H, Zhang X, Ni CM, Huang ZP, Qiao GL, Ouyang L. UBE2C promotes the progression of pancreatic cancer and glycolytic activity via EGFR stabilization-mediated PI3K-Akt pathway activation. J Gastrointest Oncol 2022; 13:1444-1453. [PMID: 35837197 PMCID: PMC9274053 DOI: 10.21037/jgo-22-516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is among the most prevalent and deadliest endocrine tumors, yet the mechanisms governing its pathogenesis remain to be fully clarified. While ubiquitin-conjugating enzyme E2C (UBE2C) has been identified as an important oncogene in several cancers, its importance in PC has yet to be established. METHODS UBE2C expression in PC tumor samples and cell lines was examined via quantitative real-time polymerase chain reaction (qRT-PCR), while appropriate commercial kits were used to assess lactate production, ATP generation, and the uptake of glucose. RESULTS UBE2C was found to be upregulated in PC patient tumors and correlated with poorer survival outcomes. In PC cell lines, the silencing of this gene suppressed the malignant activity of cells, thus supporting its identification as an oncogene in this cancer type. Mechanistically, UBE2C was found to promote enhanced matrix metalloproteinase (MMP) protein expression via activating the PI3K-Akt pathway. Moreover, it was found to bind to the epidermal growth factor receptor (EGFR), stabilizing it and driving additional PI3K-Akt pathway activation. UBE2C knockdown in PC cells impaired their uptake of glucose and their ability to produce lactate and ATP. CONCLUSIONS In conclusion, the results of this study support a role for UBE2C as a driver of metastatic PC progression owing to its ability to bind to EGFR and to induce signaling via the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Jing-Zhu Cao
- Department of Endocrinology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Gang Nie
- Department of HBP Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hao Hu
- Department of HBP Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xiao Zhang
- Department of Nuclear Medicine, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Chen-Ming Ni
- Department of HBP Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhi-Ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Ouyang
- Department of HBP Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
6
|
Rogala B, Khan ZA, Jackson-Boeters L, Darling MR. Investigation of the Molecular Profile of Granular Cell Tumours and Schwannomas of the Oral Cavity. Dent J (Basel) 2022; 10:dj10030038. [PMID: 35323240 PMCID: PMC8946879 DOI: 10.3390/dj10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Granular cell tumours (GCTs) are rare submucosal lesions, thought to develop from Schwann cells, characterised by large polygonal cells with abundant lysosomes. The objectives of this study are to investigate whether GCTs have an antigen-presenting cell (APC) phenotype or a neural crest phenotype using immunohistochemistry and to compare expression profiles with Schwannomas. Immunoreactivity to CD68, HLA-DR, CD163, CD40 and CD11c (APC phenotype) and markers of neural crest cell (NCC) origin S100, SOX10, NSE and GAP43 in 23 cases of GCTs and 10 cases of Schwannomas were evaluated. RT-qPCR was used to identify a possible NCC developmental phenotype in 6 cases of GCTs. GAP43 was identified as a new NCC marker for GCTs, and some evidence was found for an APC phenotype from CD68 and HLA-DR immunoreactivity. RT-qPCR failed to identify an NCC developmental phenotype of GCTs, likely due to technical issues.
Collapse
|
7
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Zuo XM, Sun HW, Fang H, Wu Y, Shi Q, Yu YF. miR-4443 targets TRIM14 to suppress metastasis and energy metabolism of papillary thyroid carcinoma (PTC) in vitro. Cell Biol Int 2021; 45:1917-1925. [PMID: 34051007 DOI: 10.1002/cbin.11631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 01/09/2023]
Abstract
Tripartite motif-containing protein 14 (TRIM14) is a tumor-promoter in papillary thyroid carcinoma (PTC). We found that miR-4443 expression was significantly downregulated in PTC tumor tissue, and was negatively associated with TRIM14. This study was designed to investigate the relationship between miR-4443 and TRIM14 on metastasis and energy metabolism in PTC and the underlying mechanisms. To this end, human PTC cells (SW1736 and MZ-CRC-1) were transfected with a miR-4443 mimic or miR-4443 inhibitor + siRNA-TRIM14, and then dual-luciferase assay, Transwell, Seahorse, and western blot analyses were performed to assess the function of miR-4443 and the underlying mechanism. We found that ectopic expression of miR-4443 inhibited PTC cell migration, invasion, ATP production, and aerobic glycolysis, while inhibition of miR-4443 had the opposite effect. miR-4443 directly targeted TRIM14 and reduced both TRIM14 mRNA and protein levels. Silencing TRIM14 significantly reversed miR-4443 inhibition-induced PTC cell migration, invasion, ATP production, aerobic glycolysis, and phosphorylation of the transcription factor STAT3. These findings suggest that miR-4443 is a tumor suppressor in PTC and inhibits metastasis and energy metabolism via the suppression of TRIM14 signaling.
Collapse
Affiliation(s)
- Xiao-Ming Zuo
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai-Wen Sun
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong Fang
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Wu
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qun Shi
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Fan Yu
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Li Q, Jiang S, Feng T, Zhu T, Qian B. Identification of the EMT-Related Genes Signature for Predicting Occurrence and Progression in Thyroid Cancer. Onco Targets Ther 2021; 14:3119-3131. [PMID: 34012269 PMCID: PMC8127002 DOI: 10.2147/ott.s301127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The detection rate of thyroid cancer (TC) has been continuously improved due to the development of detection technology. Epithelial-mesenchymal transition (EMT) is thought to be closely related to the malignant progression of tumors. However, the relationship between EMT-related genes (ERGs) characteristics and the diagnosis and prognosis of TC patients has not been studied. METHODS Four datasets from Gene Expression Omnibus (GEO) were used to perform transcriptomic profile analysis. The overlapping differentially expressed ERGs (DEERGs) were analyzed using the R package "limma". Then, the hub genes, which had a higher degree, were identified by the protein-protein interaction (PPI) network. Gene expression analysis between the TC and normal data, the disease-free survival (DFS) analysis of TC patients from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) cohort, function analysis, and immunohistochemistry (IHC) were performed to verify the importance of the hub genes. Finally, a prognostic risk scoring was constructed to predict DFS in patients with the selected genes. RESULTS A total of 43 DEERGs were identified and 10 DEERGs were considered hub ERGs, which had a high degree of connectivity in the PPI network. Then, the differential expressions of FN1, ITGA2, and KIT between TC and normal tissues were verified in the TCGA-THCA cohort and their protein expressions were also verified by IHC. DFS analysis indicated upregulations of FN1 expression (P<0.01) and ITGA2 expression (P<0.01) and downregulation of KIT expression (P=0.01) increased risks of decreased DFS for TCGA-THCA patients. Besides, by building a prognostic risk scoring model, we found that the DFS of TCGA-THCA patients was significantly worse in high-risk groups. CONCLUSION In summary, these hub ERGs were potential biomarkers for diagnosis and prognosis of TC, which can provide a basis for further exploring the efficacy of EMT in patients with TC.
Collapse
Affiliation(s)
- Qiang Li
- Public Health College, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, People’s Republic of China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Sheng Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Tienan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Tengteng Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
10
|
Song SS, Huang S, Park S. Association of Polygenetic Risk Scores Related to Cell Differentiation and Inflammation with Thyroid Cancer Risk and Genetic Interaction with Dietary Intake. Cancers (Basel) 2021; 13:1510. [PMID: 33805984 PMCID: PMC8038131 DOI: 10.3390/cancers13071510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
The incidence of thyroid cancer continues to increase steadily, and this increasing incidence cannot be attributed solely to the overdiagnosis of microcarcinoma or technical advancements in detection methods and may also depend on environmental and genetic factors. However, the impacts and interactions of genetic and environmental factors remain controversial, and they may differ in Eastern and Western countries. The study's purpose was to identify single nucleotide polymorphisms of genes related to cell differentiation and inflammation to influence thyroid cancer incidence and determine interactions with lifestyles in a large city hospital-based cohort. Genetic variants were selected by genome-wide association study with thyroid cancer participants (case; n = 495) and controls without cancers (n = 56,439). SNPs having gene-gene interactions were selected by generalized multifactor dimensionality reduction. Polygenic risk scores (PRSs) were generated by summing the number of selected SNP risk alleles. PRSs of the best model included 6 SNPs, that is, DIRC3_rs6759952, GAP43_rs13059137, NRG1_rs7834206, PROM1_rs72616195, LRP1B_rs1369535, and LOC100507065_rs11175834. Participants with a high-PRS had a higher thyroid cancer risk by 3.9-fold than those with a low-PRS. The following variables were related to an increased thyroid cancer risk; female (OR = 4.21), high white blood cell count (OR = 4.03), and high energy (OR = 7.00), low alcohol (OR = 4.11), and high seaweed (OR = 4.02) intakes. These variables also interacted with PRS to influence thyroid cancer risk. Meat/noodle diet patterns interacted with PRSs to increase thyroid cancer risk (p = 0.0023). In conclusion, women with a high-PRS associated with cell differentiation and inflammation were at an elevated thyroid cancer risk. Daily energy, seaweeds, and alcohol intake interacted with PRS for thyroid cancer risk. These results could be applied to personalized nutrition plans to reduce the risk of thyroid cancer.
Collapse
Affiliation(s)
- Sang Shin Song
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
| | - ShaoKai Huang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea;
| | - Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea;
| |
Collapse
|
11
|
Zheng C, Quan RD, Wu CY, Hu J, Lin BY, Dong XB, Xia EJ, Bhandari A, Zhang XH, Wang OC. Growth-associated protein 43 promotes thyroid cancer cell lines progression via epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:7974-7984. [PMID: 31568662 PMCID: PMC6850924 DOI: 10.1111/jcmm.14460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer is maintaining at a high incidence level and its carcinogenesis is mainly affected by a complex gene interaction. By analysis of the next‐generation resequencing of paired papillary thyroid cancer (PTC) and adjacent thyroid tissues, we found that Growth Associated Protein 43 (GAP43), a phosphoprotein activated by protein kinase C, might be novel markers associated with PTC. However, its function in thyroid carcinoma has been poorly understood. We discovered that GAP43 was significantly overexpressed in thyroid carcinoma and these results were consistent with that in The Cancer Genome Atlas (TCGA) cohort. In addition, some clinicopathological features of GAP43 in TCGA database showed that up‐regulated GAP43 is significantly connected to lymph node metastasis (P < 0.001) and tumour size (P = 0.038). In vitro experiments, loss of function experiments was performed to investigate GAP43 in PTC cell lines (TPC‐1 and BCPAP). The results proved that GAP43 knockdown in PTC cell significantly decreased the function of cell proliferation, colony formation, migration, and invasion and induced cell apoptosis. Furthermore, we also indicated that GAP43 could modulate the expression of epithelial‐mesenchymal transition‐related proteins, which could influence invasion and migration. Put those results together, GAP43 is a gene which was associated with PTC and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Rui-Da Quan
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Cheng-Yong Wu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jing Hu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bang-Yi Lin
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xu-Bing Dong
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Er-Jie Xia
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Adheesh Bhandari
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Hua Zhang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ou-Chen Wang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|