1
|
de Barros JW, Joule Pierre K, Kempinas WDG, Tremblay JJ. Ethylene dimethanesulfonate effects on gene promoter activities related to the endocrine function of immortalized Leydig cell lines R2C and MA-10. Curr Res Toxicol 2023; 6:100147. [PMID: 38234696 PMCID: PMC10792691 DOI: 10.1016/j.crtox.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Ethylene dimethanesulfonate (EDS) is a molecule with known selective cytotoxicity on adult Leydig cells. A single intraperitoneal injection in rats but not mice, leads to male androgen deprivation and infertility. In vitro studies using rat and mouse immortalized Leydig cell lines, showed similar effects of cell death promoted by EDS in rat cells as seen in vivo, and suggest that EDS affects gene transcription, which could firstly compromise steroidogenesis before the apoptosis process. Using gene reporter assay, this study aimed to investigate EDS effects on the promoter activity of genes important for endocrine function (Star, Insl3) and response to toxic agents (Gsta3) in immortalized Leydig cell lines (rat R2C and mouse MA-10 cells), as well as identify possible EDS-responsive elements in the Star gene promoter. EDS exposure of R2C and MA-10 Leydig cells increased Gsta3 promoter activity after 4 h of treatment and decreased Insl3 promoter activity only in R2C cells after 24 h of treatment. EDS also decreased Star promoter activity in both Leydig cell lines. Using R2C cells, the EDS-responsive region in the Star promoter was located between -400 and -195 bp. This suggests that this region and the associated transcription factors, which include MEF2, might be targeted by EDS. Additional somatic gonadal cell lines expressing Star were used and EDS did not affect Star promoter activity in DC3 granulosa cells while Star promoter activity was increased in MSC-1 Sertoli cells after 24 h of treatment. This study contributes to the knowledge regarding the mechanism of EDS action in Leydig cells, and in other gonadal cell lineages, and brings new light regarding the rats and mice differential susceptibility to EDS effects, in addition to providing new avenues for experimental approaches to better understand Leydig cell function and dynamics in different rodent species.
Collapse
Affiliation(s)
- Jorge W.F. de Barros
- Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (Unesp), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
| | - Wilma De G. Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (Unesp), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec – Université Laval, Québec City, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Centre for Research in Reproduction, Development and Intergenerational Health, Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Yang W, Yu S, Peng J, Chang P, Chen X. FGF12 regulates cell cycle gene expression and promotes follicular granulosa cell proliferation through ERK phosphorylation in geese. Poult Sci 2023; 102:102937. [PMID: 37494810 PMCID: PMC10394013 DOI: 10.1016/j.psj.2023.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
The granulosa cells play an important role in the fate of follicular development or atresia in poultry. Fibroblast growth factor 12 (FGF12) is downregulated in atretic follicles and may be involved in regulating granulosa cell survival in previous studies, but its molecular mechanism remains unclear. In this study, FGF12 overexpression and knockdown models of goose granulosa cells were constructed to investigate its function. The downstream expression of the cell cycle pathway was analyzed by qPCR. Granulosa cell proliferative activity and apoptosis were detected by CCK8 and TUNEL. Protein phosphorylation levels of ERK and AKT were measured using Western blotting to analyze the key pathway of FGF12 regulation of granulosa cell proliferation. ERK protein phosphorylation inhibitor was added for further verification. After overexpression of FGF12, cell proliferation activity was increased, the expressions of cell cycle pathway genes CCND1, CCNA2, MAD2, and CHK1 were upregulated, the apoptosis of granulosa cell was decreased, and Caspase 3 gene and protein expression were downregulated. After the knockdown of FGF12, cell proliferation activity decreased, the expression of downstream genes in the cell cycle pathway was downregulated, the apoptosis of granulosa cells was increased, and the Bcl-2 gene and protein were downregulated. Overexpression of FGF12 promoted the synthesis of P4 and upregulates the expression of the STAR gene. Overexpression of FGF12 promoted ERK protein phosphorylation but did not affect AKT phosphorylation. The addition of ERK phosphorylation inhibitors resulted in the elimination of the increase in cell proliferative activity caused by FGF12 overexpression. In conclusion, FGF12 could promote proliferation and inhibit apoptosis of goose granulosa cells by increasing ERK phosphorylation.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiqi Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinzhou Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Chang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Xia P, Ouyang S, Shen R, Guo Z, Zhang G, Liu X, Yang X, Xie K, Wang D. Macrophage-Related Testicular Inflammation in Individuals with Idiopathic Non-Obstructive Azoospermia: A Single-Cell Analysis. Int J Mol Sci 2023; 24:ijms24108819. [PMID: 37240164 DOI: 10.3390/ijms24108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Male infertility is a global issue that seriously affects reproductive health. This study aimed to understand the underlying causes of idiopathic non-obstructive azoospermia (iNOA), which is a type of male infertility with unknown origins that accounts for 10-15% of cases. By using single-cell analysis techniques, we aimed to uncover the mechanisms of iNOA and gain insight into the cellular and molecular changes in the testicular environment. In this study, we performed bioinformatics analysis using scRNA-seq and microarray data obtained from the GEO database. The analysis included techniques such as pseudotime analysis, cell-cell communication, and hdWGCNA. Our study showed a significant difference between the iNOA and the normal groups, indicating a disorder in the spermatogenic microenvironment in iNOA. We observed a reduction in the proportion of Sertoli cells and blocked germ cell differentiation. Additionally, we found evidence of testicular inflammation related to macrophages and identified ODF2 and CABYR as potential biomarkers for iNOA.
Collapse
Affiliation(s)
- Peng Xia
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Siwei Ouyang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rong Shen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhao Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guokun Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiangwen Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuguang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kun Xie
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Wang S, Zhang B, Zhai Y, Tang Y, Lou Y, Zhu Y, Wang Y, Ge RS, Li H. Structure-activity relationship analysis of perfluoroalkyl carbonic acids on human and rat placental 3β-hydroxysteroid dehydrogenase activity. Toxicology 2022; 480:153334. [PMID: 36122607 DOI: 10.1016/j.tox.2022.153334] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Placenta contains 3β-hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase (HSD3B), which catalyzes pregnenolone to progesterone for maintaining pregnancy. Perfluoroalkyl carbonic acids (PFC) are subclass of perfluoroalkyl substances containing 4-14 carbons (C4-C14) in the carbon backbone and are potential endocrine disruptors. Whether PFC inhibit HSD3B and structure-activity relationship (SAR) remains unclear. Herein, we screened 11 PFC for inhibiting human type I HSD3B (HSD3B1) and rat type IV HSD3B (HSD3B4) activities and determined SAR and mode of inhibition. HSD3B was measured by converting pregnenolone to progesterone assisted by NAD+ in placental microsomes. Of the 11 PFC, C9-C14 significantly inhibited human HSD3B1 activity at 100 μM. Half-maximal inhibitory concentration (IC50) values of C9-C14 compounds were 363.56 ± 12.14, 12.78 ± 0.69, 6.54 ± 0.65, 20.88 ± 0.41, 118.35 ± 0.16, and 149.26 ± 21.67 μM, respectively. We determined Ki values and mode of inhibition of three most potent PFC (C10-C12), and found that they were mixed inhibitors against pregnenolone, with Ki values of 5.57 ± 4.37, 2.04 ± 2.26, and 9.93 ± 7.71, respectively. Docking analysis showed that they bound steroid-binding site. Effects of PFC on rat placental HSD3B4 were performed. Of the 11 PFC, C10-C12 significantly inhibited rat HSD3B4 activity at 100 μM. IC50 values of C10-C12 compounds were 45.85 ± 1.49, 36.08 ± 1.50, and 88.74 ± 1.99 µM, respectively. Ki values and inhibition modes of the three most potent PFC (C10-C12) were studied. It was found that they were mixed inhibitors against pregnenolone, with Ki values of 48.16 ± 20.44, 36.28 ± 53.07, and 91.79 ± 21.75 μM, respectively. Docking analysis showed that they bound steroid-binding site of rat HSD3B4. In conclusion, PFC showed significant SAR differences. The potency of inhibiting HSD3B activity increased from C9 to C11, and then declined. Human HSD3B1 was more sensitive to the inhibition of rat HSD3B4.
Collapse
Affiliation(s)
- Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Bingru Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingna Zhai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzhen Lou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
5
|
Mo JY, Yan YS, Lin ZL, Liu R, Liu XQ, Wu HY, Yu JE, Huang YT, Sheng JZ, Huang HF. Gestational diabetes mellitus suppresses fetal testis development in mice. Biol Reprod 2022; 107:148-156. [PMID: 35774031 DOI: 10.1093/biolre/ioac138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig and Sertoli cells. Pregnant mice were treated on gestational day (GD) 6.5 and 12.5 with streptozotocin (STZ, 100 mg/kg) or vehicle (sodium citrate buffer). Leydig and Sertoli cell development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of DHH in Sertoli cells of testes of male offspring. Fetal Leydig cell number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/β-Catenin signaling was activated and Gsk3β signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.
Collapse
Affiliation(s)
- Jia-Ying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Zhong-Liang Lin
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Rui Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Xuan-Qi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Hai-Yan Wu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yu-Tong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jian-Zhong Sheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang S, Wen Z, Li X, Lin L, Zou C, Li Y, Wang Y, Ge RS. Short-term exposure to perfluorotetradecanoic acid affects the late-stage regeneration of Leydig cells in adult male rats. Toxicol Appl Pharmacol 2021; 433:115777. [PMID: 34736952 DOI: 10.1016/j.taap.2021.115777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/09/2021] [Accepted: 10/24/2021] [Indexed: 01/09/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is one of perfluoroalkyl substances widely found in the environment. PFTeDA may cause the dysfunction of male reproductive system. However, whether PFTeDA affects the regeneration of Leydig cells remains unclear. The objective of this study was to examine the effects of short-term exposure of PFTeDA on the late-stage maturation of Leydig cells. Fifty-four adult Sprague-Dawley male rats were daily gavaged with PFTeDA (0, 10, or 20 mg/kg body weight) for 10 days, and then were injected intraperitoneally with ethylene dimethane sulfonate (EDS, 75 mg/kg body weight/once) to ablate Leydig cells to induce their regeneration. On day 21 (early stage) and 56 (late stage) after EDS, hormone levels, gene expression, and protein levels were measured. PFTeDA did not affect the early stage of Leydig cell regeneration, because it had no effect on serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels, Leydig cell number, and its gene and protein expression. PFTeDA significantly reduced serum testosterone level and down-regulated the expression of Leydig cell genes (Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins (CYP11A1, HSD3B1, CYP17A1, HSD17B3, and INSL3), decreased the phosphorylation of AKT1 and ERK1/2, as well as lowered sperm count in the epididymis at 20 mg/kg. In conclusion, short-term exposure to PFTeDA blocks the late-stage maturation of Leydig cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfeixiang, Mochou Road, Nanjing 210004, Jiangsu, China
| | - Zina Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liben Lin
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Liu M, Chen H, Dai H, Zhou L, Wang Y, Xin X, Chen C, Li Z, Ge RS. Effects of bis(2-butoxyethyl) phthalate exposure in utero on the development of fetal Leydig cells in rats. Toxicol Lett 2021; 351:65-77. [PMID: 34454012 DOI: 10.1016/j.toxlet.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Phthalates are plasticizers widely found in the environment. They are potential endocrine disruptors. Bis(2-butoxyethyl) phthalate (BBOP) is a unique phthalate that contains oxygen atoms in the carbon backbone. Little is known about its reproductive and developmental toxicity. The objective of this study was to determine the effect of BBOP on fetal Leydig cell development after in utero exposure to rats. Sprague Dawley pregnant dams were randomly allocated into 6 groups, and were gavaged with BBOP (0, 10, 100, 250, 500, and 1000 mg/kg body weight/day) from gestational day (GD) 14-21. Seven of the 8 dams in the 1000 mg/kg BBOP group died before giving birth. Twelve of the 20 dams in the 500 mg/kg BBOP group had whole litter loss. BBOP significantly reduced the body weight of dams and male offspring and serum testosterone level and anogenital distance of male fetus on GD 21 at 500 mg/kg. BBOP markedly increased fetal Leydig cell proliferation and number at 500 mg/kg while inducing their abnormal aggregation at 250 and 500 mg/kg. BBOP down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, and Nr5a1 at various doses while up-regulating the expression of Sertoli cell gene Fshr and Sox9. The phosphorylation of AKT1, AKT2, and ERK1/2 was also markedly reduced by BBOP. In conclusion, BBOP in utero exposure can disrupt fetal Leydig cell development, possibly via the mechanism that may include inhibiting the phosphorylation of AKT1, AKT2, and ERK1/2.
Collapse
Affiliation(s)
- Miaoqing Liu
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiqiong Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangbi Zhou
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Chen H, Xin X, Liu M, Ma F, Yu Y, Huang J, Dai H, Li Z, Ge RS. In utero exposure to dipentyl phthalate disrupts fetal and adult Leydig cell development. Toxicol Appl Pharmacol 2021; 419:115514. [PMID: 33798595 DOI: 10.1016/j.taap.2021.115514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/20/2023]
Abstract
Phthalates as plasticizers are widely used in many consumer products. Dipentyl phthalate (DPeP) is one of phthalates. However, there are currently few data on whether DPeP exposure affects rat Leydig cell development. In this study, we investigated the effects of in utero DPeP exposure on Leydig cell development in the testes of male newborn and adult rats. From gestational days 14 to 21, Sprague-Dawley pregnant rats were gavaged vehicle (corn oil, control) or DPeP (10, 50, 100, and 500 mg/kg body weight/day). Testosterone and the expression of Leydig cell genes and proteins in the testis at birth and at postnatal day 56 were examined. DPeP dose-dependently reduced serum testosterone levels of male offspring at birth and at postnatal day 56 at 100 and 500 mg/kg and lowered serum luteinizing hormone levels at adult males at ≥10 mg/kg when compared with the control. In addition, DPeP increased number of fetal Leydig cells by inducing their proliferation but down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Insl3 in fetal Leydig cells per se. DPeP reduced number of adult Leydig cells by inducing cell apoptosis and down-regulated the expression of Lhcgr and Star in adult Leydig cells at postnatal day 56. DPeP lowered SIRT1 and BCL2 levels in the testis of adult rats. In conclusion, DPeP adversely affects both fetal and adult Leydig cell development after in utero exposure.
Collapse
Affiliation(s)
- Haiqiong Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaoqing Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Huang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Zhan X, Zhang J, Li S, Zhang X, Li L, Song T, Liu Q, Lu J, Xu Y, Ge RS. Monocyte Chemoattractant Protein-1 stimulates the differentiation of rat stem and progenitor Leydig cells during regeneration. BMC DEVELOPMENTAL BIOLOGY 2020; 20:20. [PMID: 33023470 PMCID: PMC7541273 DOI: 10.1186/s12861-020-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Background Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro. Results Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1. Conclusion MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.
Collapse
Affiliation(s)
- Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingwei Zhang
- Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Saiyang Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Xiaolu Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linchao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Tiantian Song
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qunlong Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Jun Lu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Tongji University School of Medicine, Shanghai, 200092, China. .,Nanjing Medical University, Nanjing, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
12
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Zhu Q, Dong Y, Li X, Ni C, Huang T, Sun J, Ge RS. Dehydroepiandrosterone and Its CYP7B1 Metabolite 7α-Hydroxydehydroepiandrosterone Regulates 11β-Hydroxysteroid Dehydrogenase 1 Directions in Rat Leydig Cells. Front Endocrinol (Lausanne) 2019; 10:886. [PMID: 32038478 PMCID: PMC6993528 DOI: 10.3389/fendo.2019.00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The purpose of this study was to investigate cytochrome P450-7B1 (CYP7B1) in the human and rat testes to regulate 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity. We hypothesized that dehydroepiandrosterone (DHEA) and its product 7α-hydroxydehydroepiandrosterone (7αOHD) after catalysis of CYP7B1 played a critical role in driving the direction of 11β-HSD1, because 7αOHD is an alternative substrate for 11β-HSD1. Methods: We examined the influence of DHEA and 7αOHD on 11β-HSD1 activities in both intact Leydig cells and microsomes using radioactive substrates and identified the location of CYP7B1 in Leydig cells using immunohistochemical staining, Western blot, and qPCR. Results: We found that DHEA stimulated 11β-HSD1 oxidase activity in intact cells (EC50 = 0.97 ± 0.11 μM) and inhibited its reductase activity (IC50 = 1.04 ± 0.06 μM). In microsomes, DHEA was a competitive inhibitor of the reductase activity. The 11β-HSD1 oxidase activity in intact cells was inhibited by 7αOHD (IC50 = 1.18 ± 0.12 μM), and the reductase activity was enhanced (EC50 = 0.7 ± 0.04 μM). 7αOHD was a competitive inhibitor of 11β-HSD1 oxidase. CYP7B1 was present in rat Leydig cells, as shown by immunohistochemistry, Western blotting, and qPCR analysis. Conclusion: Our results are consistent with a conclusion that DHEA in the circulation driving 11β-HSD1 toward an oxidase in Leydig cells mainly through inhibiting the reductase of the enzyme, while 7αOHD (CYP7B1 catalytic product of DHEA) drives the enzyme toward the opposite direction.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianliang Sun
- Department of Anesthesia, Hangzhou Hospital Affiliated to Zhejiang University, Hangzhou First People's Hospital, Hangzhou, China
- *Correspondence: Jianliang Sun
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|