1
|
Shi M, Li H, Liang R, Lin H, Tang Q. The transcription factor STAT3 and aging: an intermediate medium. Biogerontology 2025; 26:55. [PMID: 39920354 DOI: 10.1007/s10522-025-10193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Aging is a physiological/pathological process accompanied by progressive impairment of cellular function, leading to a variety of aging-related diseases. STAT3 is one of the core regulatory factors of aging. It is involved in body metabolism, development and senescence, cell apoptosis and so on. During the aging process, the changes of growth factors and cytokines will cause the activation of STAT3 to varying degrees, regulate the inflammatory pathways related to aging, regulate body inflammation, mitochondrial function, cell aging and autophagy to regulate and influence the aging process. Drugs targeting STAT3 can treat senescence related diseases. This review summarizes the role of STAT3 signaling factors in the pathogenesis of aging, including mitochondrial function, cellular senescence, autophagy, and chronic inflammation mediated by inflammatory pathways. Finally, the key regulatory role of STAT3 in senescence related diseases is emphasized. In summary, we reveal that drug development and clinical application targeting STAT3 is one of the key points in delaying aging and treating aging-related diseases in the future.
Collapse
Affiliation(s)
- Min Shi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Haiyan Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
2
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Moss CE, Phipps H, Wilson HL, Kiss-Toth E. Markers of the ageing macrophage: a systematic review and meta-analysis. Front Immunol 2023; 14:1222308. [PMID: 37520567 PMCID: PMC10373068 DOI: 10.3389/fimmu.2023.1222308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Ageing research is establishing macrophages as key immune system regulators that undergo functional decline. Due to heterogeneity between species and tissue populations, a plethora of data exist and the power of scientific conclusions can vary substantially. This meta-analysis by information content (MAIC) and systematic literature review (SLR) aims to determine overall changes in macrophage gene and protein expression, as well as function, with age. Methods PubMed was utilized to collate peer-reviewed literature relating to macrophage ageing. Primary studies comparing macrophages in at least two age groups were included. Data pertaining to gene or protein expression alongside method used were extracted for MAIC analysis. For SLR analysis, data included all macrophage-specific changes with age, as well as species, ontogeny and age of groups assessed. Results A total of 240 studies were included; 122 of which qualified for MAIC. The majority of papers focussed on changes in macrophage count/infiltration as a function of age, followed by gene and protein expression. The MAIC found iNOS and TNF to be the most commonly investigated entities, with 328 genes and 175 proteins showing consistent dysregulation with age across the literature. Overall findings indicate that cytokine secretion and phagocytosis are reduced and reactive oxygen species production is increased in the ageing macrophage. Discussion Collectively, our analysis identifies critical regulators in macrophage ageing that are consistently dysregulated, highlighting a plethora of targets for further investigation. Consistent functional changes with age found here can be used to confirm an ageing macrophage phenotype in specific studies and experimental models.
Collapse
Affiliation(s)
- Charlotte E. Moss
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Hew Phipps
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Heather L. Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
5
|
Yin L, Li X, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:336-347. [DOI: 10.1016/j.jdsr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
|
6
|
Wang A, Zhao W, Yan K, Guo L, Gao F, Chen J, Wang Y, Ma X. Investigating the cardioprotective effects of Fuzheng Yangxin recipe based on network pharmacology and experimental evaluation. Front Pharmacol 2022; 13:1004929. [PMID: 36225565 PMCID: PMC9549113 DOI: 10.3389/fphar.2022.1004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Under Chinese medicine theory guidance, Fuzheng Yangxin Recipe (FZYX) is clinically effective for the treatment of heart failure (HF) caused by ischemic heart disease (IHD). This study aimed to investigate the mechanism of the myocardial protective effects of FZYX on HF. Materials and methods: The Gene expression omnibus database was used to identify differential genes of the IHD subtype. Through network pharmacological methods, the targets of the active components of FZYX were obtained. We also constructed IHD-induced HF model rats by ligating the left anterior descending coronary artery. Echocardiography, pathological section staining, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry, and quantitative real-time PCR analyses were performed to verify the protective effects of FZYX on the myocardium. Results: We identified 53 active components and 37 potential targets of FZYX associated with the IHD subtype. Signal transducer and activator of transcription 3 (STAT3) is a key protein in the protein-protein interaction (PPI) network. A total of 146 biological processes, 10 cellular components and 40 molecular function subcategories were identified by Gene Ontology (GO) enrichment analysis, and 18 signalling pathways, including apoptosis, were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In vivo experiments showed that FZYX significantly inhibited cardiomyocyte apoptosis, promoted the expression and phosphorylation of STAT3, and improved cardiac function. Conclusion: FZXY improves cardiac function and protects cardiomyocytes from injury via multi-component, multi-target and multi-pathway action, especially its possible role in regulating STAT3 expression and anti-apoptotic effect.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
7
|
Lee CC, Chen SY, Lee TM. 17β-Oestradiol facilitates M2 macrophage skewing and ameliorates arrhythmias in ovariectomized female infarcted rats. J Cell Mol Med 2022; 26:3396-3409. [PMID: 35514058 PMCID: PMC9189348 DOI: 10.1111/jcmm.17344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.
Collapse
Affiliation(s)
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Chou YY, Chien JY, Ciou JW, Huang SP. The Protective Effects of n-Butylidenephthalide on Retinal Ganglion Cells during Ischemic Injury. Int J Mol Sci 2022; 23:ijms23042095. [PMID: 35216208 PMCID: PMC8877670 DOI: 10.3390/ijms23042095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision loss, with the associated inflammatory response and oxidative stress being the key factors that cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP) treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group) were administered on seven consecutive days in the rAION model. Rats were evaluated for visual function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina and optic nerve were removed for histological examination after the rats were euthanized. The molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic processes after AION induction and reducing the inflammatory response through which blood-borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of demyelination. Our immunoblotting results revealed the molecular mechanism through which BP mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for ischemic injury.
Collapse
Affiliation(s)
- Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung 472, Taiwan
- Correspondence: ; Tel.: +886-3-8565-301 (ext. 2664)
| |
Collapse
|
9
|
Yang T, Chen X, Mei Z, Liu X, Feng Z, Liao J, Deng Y, Ge J. An Integrated Analysis of Network Pharmacology and Experimental Validation to Reveal the Mechanism of Chinese Medicine Formula Naotaifang in Treating Cerebral Ischemia-Reperfusion Injury. Drug Des Devel Ther 2021; 15:3783-3808. [PMID: 34522084 PMCID: PMC8434864 DOI: 10.2147/dddt.s328837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a crucial factor leading to a poor prognosis for ischemic stroke patients. As a novel Chinese medicine formula, Naotaifang (NTF) was proven to exhibit a neuroprotective effect against ischemic stroke, clinically, and to alleviate CIRI in animals. However, the mechanisms underlying the beneficial effect have not been fully elucidated. METHODS In this study, we combined a network pharmacology approach and an in vivo experiment to explore the specific effects and underlying mechanisms of NTF in the treatment of ischemia-reperfusion injury. A research strategy based on network pharmacology, combining target prediction, network construction, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking was used to predict the targets of NTF in treating the ischemic stroke and CIRI. On the other hand, we used HPLC and HRMS to identify biologically active components of NTF. Middle cerebral artery occlusion models in rats were utilized to evaluate the effect and the underlying mechanisms of NTF against CIRI after ischemic stroke. RESULTS Network pharmacology analysis revealed 43 potential targets and 14 signaling pathways for the treatment of NTF against CIRI after ischemic stroke. Functional enrichment analysis showed that a STAT3/PI3K/AKT signaling pathway serves as the target for in vivo experimental study validation. The results of animal experiments showed that NTF significantly alleviated CIRI by decreasing neurological score, infarct volume, numbers of apoptotic neuronal cells, increasing density of dendritic spines and survival of neurons. Furthermore, NTF could increase the expression of p-STAT3, PI3K, p-AKT. In addition, the detection of apoptosis-related factors showed that the NTF could raise the expression of Bcl-2 and reduce the expression of Bax. CONCLUSION This network pharmacological and experimental study indicated that NTF, as a therapeutic candidate for the management of CIRI following ischemic stroke, may exert a protective effect through the STAT3/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yihui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
10
|
Zhang M, Li P, Zhang S, Zhang X, Wang L, Zhang Y, Li X, Liu K. Study on the Mechanism of the Danggui-Chuanxiong Herb Pair on Treating Thrombus through Network Pharmacology and Zebrafish Models. ACS OMEGA 2021; 6:14677-14691. [PMID: 34124490 PMCID: PMC8190889 DOI: 10.1021/acsomega.1c01847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 05/10/2023]
Abstract
Danggui-Chuanxiong (DC) is a commonly used nourishing and activating blood medicine pair in many gynecological prescriptions and modern Chinese medicine. However, its activating blood mechanism has not been clearly elucidated. Our research aimed at investigating the activating blood mechanisms of DC using network pharmacology and zebrafish experiments. Network pharmacology was used to excavate the potential targets and mechanisms of DC in treating thrombus. The antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities of DC and the main components of DC, ferulic acid (DC2), ligustilide (DC7), and levistilide A (DC17), were evaluated by zebrafish models in vivo. A total of 24 compounds were selected as the active ingredients with favorable pharmacological parameters for this herb pair. A total of 89 targets and 18 pathways related to the thrombus process were gathered for active compounds. The genes, TNF, CXCR4, IL2, ESR1, FGF2, HIF1A, CXCL8, AR, FOS, MMP2, MMP9, STAT3, and RHOA, might be the main targets for this herb pair to exert cardiovascular activity from the analysis of protein-protein interaction and KEGG pathway results, which were mainly related to inflammation, vasculogenesis, immunity, hormones, and so forth. The zebrafish experiment results showed that DC had antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities. The main compounds had different effects of zebrafish activities. Especially, the antithrombotic activity of the DC17H group, anti-inflammatory activities of DCH and DC2H groups, antioxidant activities of DCM, DCH, DC2, DC7, and DC17 groups, and vasculogenesis activities of DCM, DCH, and DC2 groups were stronger than those of the positive group. The integrated method coupled zebrafish models with network pharmacology provided the insights into the mechanisms of DC in treating thrombus.
Collapse
Affiliation(s)
- Mengqi Zhang
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Peihai Li
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shanshan Zhang
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuanming Zhang
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lizhen Wang
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University
of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yun Zhang
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Xiaobin Li
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
- Bioengineering
Technology Innovation Center of Shandong Province, Heze 274000, China
| | - Kechun Liu
- Engineering
Research Center of Zebrafish Models for Human Diseases and Drug Screening
of Shandong Province, Key Laboratory for Biosensor of Shandong Province,
Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| |
Collapse
|
11
|
Apelin-13 alleviated cardiac fibrosis via inhibiting the PI3K/Akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. Biosci Rep 2021; 40:222454. [PMID: 32207519 PMCID: PMC7133518 DOI: 10.1042/bsr20200040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to determine whether apelin-13 could attenuate cardiac fibrosis via inhibiting the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway to inhibit reactive oxygen species in heart failure (HF) rats. HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending artery in Sprague–Dawley (SD) rats. MI-induced changes in hemodynamics and cardiac function were reversed by apelin-13 administration. The increases in the levels of collagen I, collagen III, α-smooth muscle actin (SMA), and transforming growth factor-β (TGF-β) in the heart of MI rats and cardiac fibroblasts (CFs) treated with angiotensin (Ang) II were inhibited by apelin-13. The levels of PI3K and p-Akt increased in Ang II-treated CFs, and these increases were blocked by apelin-13. The PI3K overexpression reversed the effects of apelin-13 on Ang II-induced increases in collagen I, collagen III, α-SMA, and TGF-β, NADPH oxidase activity and superoxide anions in CFs. Apelin-13 reduced the increases in the levels of NADPH oxidase activity and superoxide anions in the heart of MI rats and CFs with Ang II treatment. The results demonstrated that apelin-13 improved cardiac dysfunction, impaired cardiac hemodynamics, and attenuated fibrosis of CFs induced by Ang II via inhibiting the PI3K/Akt signaling pathway to inhibit oxidative stress.
Collapse
|
12
|
Xu XS, Feng ZH, Cao D, Wu H, Wang MH, Li JZ, Gong JP. SCARF1 promotes M2 polarization of Kupffer cells via calcium-dependent PI3K-AKT-STAT3 signalling to improve liver transplantation. Cell Prolif 2021; 54:e13022. [PMID: 33686740 PMCID: PMC8016636 DOI: 10.1111/cpr.13022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the protective effect of SCARF1 on acute rejection (AR), phagocytic clearance of Kupffer cells (KCs), M2 polarization and the exact mechanism underlying these processes. METHODS AAV was transfected into the portal vein of rats, and AR and immune tolerance (IT) models of liver transplantation were established. Liver tissue and blood samples were collected. The level of SCARF1 was detected via WB and immunohistochemical staining. Pathological changes in liver tissue were detected using HE staining. Apoptotic cells were detected using TUNEL staining. KC polarization was assessed via immunohistochemical staining. Primary KCs were isolated and co-cultured with apoptotic T lymphocytes. Phagocytosis of apoptotic cells and polarization of KCs were both detected using immunofluorescence. Calcium concentration was determined using immunofluorescence and a fluorescence microplate reader. The levels of PI3K, p-AKT and P-STAT3 were assessed via WB and immunofluorescence. RESULTS Compared to the IT group, the level of SCARF1 was significantly decreased in the AR group. Overexpression of SCARF1 in KCs improved AR and liver function markers. Enhanced phagocytosis mediated by SCARF1 is beneficial for improving the apoptotic clearance of AR and promoting M2 polarization of KCs. SCARF1-mediated enhancement of phagocytosis promotes increased calcium concentration in KCs, thus further activating the PI3K-AKT-STAT3 signalling pathway. CONCLUSIONS SCARF1 promotes the M2 polarization of KCs by promoting phagocytosis through the calcium-dependent PI3K-AKT-STAT3 signalling pathway.
Collapse
Affiliation(s)
- Xue-Song Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hao Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-Hao Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Zheng Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Lin C, Chen S, Lien H, Lin S, Lee T. Targeting the PI3K/STAT3 axis modulates age-related differences in macrophage phenotype in rats with myocardial infarction. J Cell Mol Med 2019; 23:6378-6392. [PMID: 31313516 PMCID: PMC6714172 DOI: 10.1111/jcmm.14526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/24/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Ageing is associated with impaired repair mechanisms in cardiovascular diseases. Macrophages contribute to cardiac fibrosis after myocardial infarction (MI). The phosphatidyl-inositol-3-kinase (PI3K) pathway has been shown to play a role in cardiac remodelling after MI. It remained unclear whether n-butylidenephthalide, a major component of Angelica sinensis, can attenuate cardiac fibrosis by regulating the PI3K/signal transducer and activator of transcription 3 (STAT3)-mediated macrophage phenotypes in ageing rats after MI. Twenty-four hours after ligation of the left anterior descending artery, young (2-month-old) and ageing (18-month-old) male Wistar rats were treated with either vehicle or n-butylidenephthalide for 4 weeks. There were similar infarct sizes in both age groups. Compared with young rats, ageing rats exhibited significant increased cardiac fibrosis after MI, which can be attenuated after administering n-butylidenephthalide. MI was associated with decreased activities of PI3K and STAT3 in ageing rats compared with young rats. In both age groups, n-butylidenephthalide effectively provided a significant increase of STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2c macrophage and a decrease of myofibroblast infiltration. The effects of n-butylidenephthalide on increased IL-10 levels were reversed by LY294002 or S3I-201. Furthermore, LY294002 abolished the STAT3 phosphorylation, whereas PI3K activity was not affected following the inhibition of STAT3. In conclusions, the host environment is responsible for ageing-related myofibroblast dysregulation in response to MI which can be improved by administering n-butylidenephthalide via macrophage differentiation towards M2 phenotype by targeting the PI3K/STAT3 axis.
Collapse
Affiliation(s)
- Chih‐Chan Lin
- Department of Medical ResearchChi‐Mei Medical CenterTainanTaiwan
| | - Syue‐yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical UniversityTainanTaiwan
| | - Hsiao‐Yin Lien
- Department of pharmacyKaohsiung Veterans general hospital Tainan branchTainanTaiwan
| | - Shinn‐Zong Lin
- Bioinnovation Center, Tzu Chi foundationDepartment of NeurosurgeryBuddhist Tzu Chi General Hospital, Tzu Chi UniversityYunlinTaiwan
| | - Tsung‐Ming Lee
- Cardiovascular Institute, An Nan HospitalTainanTaiwan
- Department of MedicineChina Medical UniversityTaichungTaiwan
| |
Collapse
|