1
|
Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog 2023; 62:1817-1831. [PMID: 37606187 DOI: 10.1002/mc.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.
Collapse
Affiliation(s)
- Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archismita Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Liu X, Liu Z, Liu Y, Wang N. ATG9A modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Epigenetics 2023; 18:2257538. [PMID: 37782756 PMCID: PMC10547073 DOI: 10.1080/15592294.2023.2257538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical cancer (CC) is a major public health problem, and its molecular mechanism requires further investigation. The goal of this study was to determine the role of miR-195-5p and the autophagy-related protein ATG9A in tumour metastasis, epithelial - mesenchymal transition (EMT), apoptosis, and autophagy of CC cells. Using bioinformatics analysis, we predicted ATG9A as a downstream target gene of miR-195-5p, an integral membrane protein required for autophagosome formation and involved in tumorigenesis. Next, western blotting and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that upregulation of miR-195-5p decreased protein and mRNA expression of ATG9A, and downregulation of miR-195-5p promoted ATG9A protein and mRNA expression. In addition, detection of the dual luciferase reporter gene further indicated ATG9A is a direct downstream target gene of miR-195-5p. Finally, the effects of miR-195-5p and ATG9A on CC cell proliferation, migration, invasion, EMT, autophagy, and apoptosis were evaluated in vitro. Our results showed that upregulation of miR-195-5p not only inhibits proliferation, migration, and the EMT of CC cells, but also induces apoptosis and autophagy. Conversely, downregulation of miR-195-5p increased malignant metastasis and the EMT of CC cells, and inhibited apoptosis as well as autophagy. In addition, miR-195-5p targeted and negatively regulated ATG9A, and rescue experiments suggested that overexpression of ATG9A could partially abolish miR-195-5p-mediated suppression of CC cells. Our findings improve our understanding of the mechanism of action of miR-195-5p in the malignant behaviour of CC. miR-195-5p is likely to be a promising cancer suppressor gene, which provides clinical evidence for targeted therapy of CC.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Zhen Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Yonggang Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Ning Wang
- Department of Gynecology, The Second Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
3
|
Wang Y, Wu ZW, Mou Q, Chen L, Fang T, Zhang YQ, Yin Z, Du ZQ, Yang CX. Global 3'-UTRome of porcine immature Sertoli cells altered by acute heat stress. Theriogenology 2023; 196:79-87. [PMID: 36401935 DOI: 10.1016/j.theriogenology.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Alternative polyadenylation (APA) affects the composition of cis-elements in 3'-untranslated region (3'-UTR), to regulate gene expression and localization, and subsequently the downstream biological processes. Acute heat stress could change rapidly the cellular transcriptome, however the underlying molecular changes are less explored. Here, we systematically catalogued the global 3'-UTRome dynamics, by analyzing our previously reported transcriptome sequencing data of porcine immature Sertoli (iST) cells before (Control group), acute heat stress treatment at 43 °C for 0.5h (HS0.5 group), and 36h recovery culture (HS0.5-R36h group) after acute heat stress treatment. After three group comparisons (HS0.5 vs. Control, HS0.5-R36 vs. HS0.5, and HS0.5-R36 vs. Control), DaPars (dynamic analysis of alternative polyadenylation) identified 639, 464 and 290 mRNAs, and APAtrap (a tool to identify APA sites and detect changes of APA site usage) identified 713, 518 and 321 mRNAs, with significantly different 3'-UTRs (Padj.≤0.05), respectively. These genes with different 3'-UTR patterns were mainly enriched in P53, glycolysis/gluconeogenesis, HIF-1, apoptosis, PI3K-Akt and AMPK signaling pathways. Further analysis identified that average 3'-UTR lengths of Acss2, Inpp1 and Nr1h4 were more than 140 nt longer (HS0.5-R36 vs. HS0.5), and contained different cis-elements (PAS, CPE and microRNA binding sites). Moreover, Hsp70.2, Inhbb and Dhrs were identified to have extremely different 3'-UTR abundances. Further 3'RACE assays validated several 3'-UTRs of Nr1h4, and RT-qPCR confirmed the abundance changes of different 3'-UTR isoforms for Nr1h4 and Hsp70.2. Our findings provide useful information and resources to further uncover the molecular role of 3'-UTR, in regulating the response of porcine iST cells to acute heat stress.
Collapse
Affiliation(s)
- Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yu-Qing Zhang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
Proteomic Analysis Reveals Molecular Differences in the Development of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8266544. [PMID: 35958927 PMCID: PMC9357686 DOI: 10.1155/2022/8266544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is the 3rd leading cause of death from cancer and the 5th most common cancer worldwide. The detection rate of GC among Tibetans is significantly higher than that in Han Chinese, probably due to differences in their living habits, dietary structure, and environment. Despite such a high disease burden, the epidemiology of gastric cancer has not been studied in this population. Molecular markers are required to aid the diagnosis and treatment of GC. In this study, we collected gastric tissue samples from patients in Tibet with chronic nonatrophic gastritis (CNAG) (n = 6), chronic atrophic gastritis (CAG) (n = 7), gastric intraepithelial neoplasia (GIN) (n = 4), and GC (n = 5). The proteins in each group were analyzed using coupled label-free mass spectrometry. In addition, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein interaction networks were used to analyze the differentially expressed proteins (DEPs) among groups. DEPs were quantified in comparisons of GC versus CNAG (223), GC versus GIN (100), and GIN versus CNAG (341). GO and KEGG analyses showed that the DEPs were mainly associated with immunity (GC versus CNAG) and cancer proliferation and metastasis (GC versus GIN, and GIN versus CNAG). Furthermore, the expression levels of cell proliferation and cytoskeleton-related proteins increased consistently during cancer development, such as ITGA4, DDC, and CPT1A; thus, they are potential diagnostic markers. These results obtained by proteomics analysis could improve our understanding of cancer biology in GC and provide a rich resource for data mining and discovering potential immunotherapy targets.
Collapse
|
5
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Chen H, Cai B, Liu K, Hua Q. miR‑27a‑3p regulates the inhibitory influence of endothelin 3 on the tumorigenesis of papillary thyroid cancer cells. Mol Med Rep 2021; 23:243. [PMID: 33537832 PMCID: PMC7893708 DOI: 10.3892/mmr.2021.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Several studies on papillary thyroid cancer (PTC) have been performed. However, the effects of endothelin 3 (EDN3) and microRNA (miR)-27a-3p on PTC cells has yet to be investigated, to the best of the authors' knowledge. The present study aimed to explore the biological functions of EDN3 and miR-27a-3p in PTC cells. Bioinformatics analysis was conducted to identify possible key genes and miRs involved in PTC progression. Western blot analysis and reverse transcription-quantitative (RT-q) PCR were employed to confirm the key genes or miRs expressed in PTC cells. Cytological methods were used to detect cell viability, proliferation, apoptosis and migration and luciferase reporter assay was performed to confirm the relationship between END3 and miR-27a-3p. After analyzing the results of gene microarray analyses and RT-qPCR, EDN3 with low expression was identified as the key gene associated with PTC progression. It was also found that EDN3 overexpression in PTC cells impaired cell viability, proliferation and migration but promoted cell apoptosis. In addition, the findings revealed that miR-27a-3p could relieve the inhibitory influence of EDN3 on PTC cells by binding to EDN3 mRNA 3′ untranslated region (UTR), thereby suppressing EDN3 expression. Overall, the results of the present study demonstrated that by binding to EDN3 mRNA 3′UTR, miR-27a-3p could attenuate the inhibitory function of EDN3 in the tumorigenesis of PTC cells.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Binlin Cai
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Kun Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
| | - Qingquan Hua
- Department of Otorhinolaryngology‑Head and Neck Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Li Y, Li C, Liu S, Yang J, Shi L, Yao Y. The associations and roles of microRNA single-nucleotide polymorphisms in cervical cancer. Int J Med Sci 2021; 18:2347-2354. [PMID: 33967611 PMCID: PMC8100648 DOI: 10.7150/ijms.57990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is one of the fourth most common gynecological malignancies and has been identified as the fourth leading cause of cancer death in women worldwide. MicroRNAs (miRNAs) are single-stranded sequences of noncoding RNAs that are approximately 22-24 nucleotides in length. They modulate posttranscriptional mRNA expression and play critical roles in cervical cancer. Single nucleotide polymorphisms (SNPs) in miRNA genes may alter miRNA expression and maturation and have been associated with various cancers. This review mainly focuses on the roles of SNPs in miRNA genes in the development of cervical cancer and summarizes the research progress of miRNA SNPs in cervical cancer and their molecular regulation mechanisms.
Collapse
Affiliation(s)
- Yaheng Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|
8
|
Abstract
Tuberculosis (TB) is the leading cause of death caused by single pathogenic microorganism, Mycobacterium tuberculosis (MTB). The study aims to explore the associations of microRNA (miRNA) single-nucleotide polymorphisms (SNPs) with pulmonary TB (PTB) risk. A population-based case−control study was conducted, and 168 newly diagnosed smear-positive PTB cases and 251 non-TB controls were recruited. SNPs located within miR-27a (rs895819), miR-423 (rs6505162), miR-196a-2 (rs11614913), miR-146a (rs2910164), miR-618 (rs2682818) were selected and MassARRAY® MALDI-TOF System was employed for genotyping. SPSS19.0 was adopted for statistical analysis, non-conditional logistic regression was performed. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were computed to estimate the associations. Associations of haplotypes with PTB risk were performed with online tool. Rs895819 CT/CC genotype was associated with reduced PTB risk among female population (OR = 0.45, 95% CI: 0.23–0.98), P = 0.045. Haplotypes (combined with rs895819, rs2682818, rs2910164, rs6505162 and rs11614913) TCCCT, TAGCC, CCCCC, CCGCT and TCGAT were associated with reduced PTB risk and the ORs were 0.67 (95% CI: 0.45–0.99), 0.49 (0.25–0.94), 0.34 (95% CI: 0.14–0.81), 0.22 (95% CI: 0.06–0.84) and 0.24 (95% CI: 0.07–0.79), respectively; while the haplotypes of TAGCT, CCCCT, CACCT and TCCAT were associated with increased PTB risk, and the ORs were 3.63 (95% CI: 1.54–8.55), 2.20 (95% CI: 1.00–4.86), 3.90 (95% CI: 1.47–10.36) and 2.95 (95% CI: 1.09–7.99), respectively. Rs895819 CT/CC genotype was associated with reduced female PTB risk and haplotype TCCCT, TAGCC, CCCCC, CCGCT and TCGAT were associated with reduced PTB risk, while TAGCT, CCCCT, CACCT and TCCAT were associated with increased risk.
Collapse
|
9
|
Deng X, Zhen P, Niu X, Dai Y, Wang Y, Zhou M. APE1 promotes proliferation and migration of cutaneous squamous cell carcinoma. J Dermatol Sci 2020; 100:67-74. [PMID: 32951990 DOI: 10.1016/j.jdermsci.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human Apurinic/Apyrimidinic Endonuclease 1 (APE1/REF-1/HAP1) is a multifunction protein involved in the progression of cancer. But the role of APE1 in cutaneous squamous cell carcinoma (cSCC) is unclear. OBJECTIVE This study is aimed to investigate the basic modulatory mechanism of APE1 in cSCC development and offer a novel potential target for clinical treatment. METHODS The expression of APE1 in cSCC tissues was detected by western blot and immunohistochemistry (IHC) staining. The function of APE1 and miR-27a in cSCC cells was investigated by cell counting kit-8 (CCK-8) assays, colony formation assays and transwell migration assays. Western blot was used to determine the expression of APE1 in cSCC and epithelial-mesenchymal transition (EMT) markers in HSC-1 and HSC-5 cells with APE1 knockdown or overexpression. Double luciferase reporter assays were performed to confirm the interaction of miR-27a and APE1. RESULTS We identified that APE1 was significantly upregulated in human cSCC tissues and cSCC cells and its overexpression promoted cell proliferation, migration and the expression of EMT markers in cSCC cells. Mechanistically, miR-27a was predicted and confirmed as the upstream of APE1. Its downregulation also enhanced the proliferation and migration of cSCC cells. Rescue experiments demonstrated that restoration of APE1 expression significantly abolished the inhibition of cell proliferation and migration mediated by miR-27a. CONCLUSION As a direct gene of miR-27a, APE1 improved cell proliferation and migration to promote the progression of cSCC, which could be considered as a potential therapeutic target for cSCC treatment.
Collapse
Affiliation(s)
- Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China
| | - Yu Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China; Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China.
| |
Collapse
|
10
|
Li P, Zhang Q, Tang H. INPP1 up-regulation by miR-27a contributes to the growth, migration and invasion of human cervical cancer. J Cell Mol Med 2019; 23:7709-7716. [PMID: 31557403 PMCID: PMC6815772 DOI: 10.1111/jcmm.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023] Open
Abstract
Inositol polyphosphate‐1‐phosphatase (INPP1) is an enzyme that is responsible for glycolysis and lipid metabolism. Here, we discovered that INPP1 expression was up‐regulated in CC tissues compared to that in adjacent normal tissues by RT‐qPCR. Inositol polyphosphate‐1‐phosphatase overexpression promoted and INPP1 knockdown suppressed cell viability, cellular migration/invasion and EMT in CC cells. To explore the mechanism of dysregulation, INPP1 was predicted to be a target of miR‐27a, and a pmiRGLO dual‐luciferase reporter assay showed that miR‐27a bound to the 3′ UTR of INPP1. RT‐qPCR revealed that miR‐27a was also up‐regulated and had a positive correlation with INPP1 expression in CC tissues. Furthermore, shR‐INPP1 could favour the malignant phenotype reversion induced by miR‐27a, suggesting that miR‐27a up‐regulates INPP1 to promote tumorigenic activities. Altogether, our findings show that the up‐regulation of INPP1 by miR‐27a contributes to tumorigenic activities and may provide a potential biomarker for CC.
Collapse
Affiliation(s)
- Pu Li
- Tianjin Central Obstetrics and Gynecology Hospital, Reproductive Medical Center, Tianjin, China
| | - Qiaoge Zhang
- Tianjin Life Science Research Center and Department of Pathogen, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|