1
|
Feng P, Yang F, Zang D, Bai D, Xu L, Fu Y, You R, Liu T, Yang X. Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity. Mol Cell Biochem 2024:10.1007/s11010-024-05143-5. [PMID: 39485641 DOI: 10.1007/s11010-024-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pan Feng
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721000, China
| | - Fan Yang
- Guang'an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dongmei Zang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dapeng Bai
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Liyan Xu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yueyun Fu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ranran You
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Chen T, Wan L, Xiao Y, Wang K, Wu P, Li C, Huang C, Liu X, Xue W, Sun G, Ji X, Lin H, Ji Z. Curcumin/pEGCG-encapsulated nanoparticles enhance spinal cord injury recovery by regulating CD74 to alleviate oxidative stress and inflammation. J Nanobiotechnology 2024; 22:653. [PMID: 39443923 PMCID: PMC11515499 DOI: 10.1186/s12951-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Spinal cord injury (SCI) often accompanies impairment of motor function, yet there is currently no highly effective treatment method specifically for this condition. Oxidative stress and inflammation are pivotal factors contributing to severe neurological deficits after SCI. In this study, a type of curcumin (Cur) nanoparticle (HA-CurNPs) was developed to address this challenge by alleviating oxidative stress and inflammation. Through non-covalent interactions, curcumin (Cur) and poly (-)-epigallocatechin-3-gallate (pEGCG) are co-encapsulated within hyaluronic acid (HA), resulting in nanoparticles termed HA-CurNPs. These nanoparticles gradually release curcumin and pEGCG at the SCI site. The released pEGCG and curcumin not only scavenge reactive oxygen species (ROS) and prevents apoptosis, thereby improving the neuronal microenvironment, but also regulate CD74 to promote microglial polarization toward an M2 phenotype, and inhibits M1 polarization, thereby suppressing the inflammatory response and fostering neuronal regeneration. Moreover, in vivo experiments on SCI mice demonstrate that HA-CurNPs effectively protect neuronal cells and myelin, reduce glial scar formation, thereby facilitating the repair of damaged spinal cord tissues, restoring electrical signaling at the injury site, and improving motor functions. Overall, this study demonstrates that HA-CurNPs significantly reduce oxidative stress and inflammation following SCI, markedly improving motor function in SCI mice. This provides a promising therapeutic approach for the treatment of SCI.
Collapse
Affiliation(s)
- Tianjun Chen
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Wan
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongchun Xiao
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ping Wu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Can Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqiang Huang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiangge Liu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe Peoples Hospital), Jinan University, Heyuan, 517000, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
3
|
Zhang W, Shu Z, Huang P, Cheng H, Ji J, Wei D, Ren L. Adenylate cyclase 1 knockdown attenuates pirarubicin-induced cardiotoxicity. Clin Exp Pharmacol Physiol 2024; 51:e13920. [PMID: 39227014 DOI: 10.1111/1440-1681.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to investigate the effects and possible mechanisms of adenylate cyclase 1 (ADCY1) on pirarubicin-induced cardiomyocyte injury. HL-1 cells were treated with pirarubicin (THP) to induce intracellular toxicity, and the extent of damage to mouse cardiomyocytes was assessed using CCK-8, Edu, flow cytometry, ROS, ELISA, RT-qPCR and western blotting. THP treatment reduced the viability of HL-1 cells, inhibited proliferation, induced apoptosis and triggered oxidative stress. In addition, the RT-qPCR results revealed that ADCY1 expression was significantly elevated in HL-1 cells, and molecular docking showed a direct interaction between ADCY1 and THP. Western blotting showed that ADCY1, phospho-protein kinase A and GRIN2D expression were also significantly elevated. Knockdown of ADCY1 attenuated THP-induced cardiotoxicity, possibly by regulating the ADCY1/PKA/GRIN2D pathway.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhiyun Shu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - HongYuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu X, Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. Basic Res Cardiol 2024:10.1007/s00395-024-01054-0. [PMID: 38724618 DOI: 10.1007/s00395-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
5
|
Wang LL, Li J, Xue H, Zhang L, Yu DY, Yang N, Yun WJ, Zhao MZ, Xue H. The promoting effects of Grin2d expression in tumorigenesis and the aggressiveness of esophageal cancer. Histol Histopathol 2024; 39:659-670. [PMID: 37982578 DOI: 10.14670/hh-18-674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Grin2d is an ionotropic NMDA receptor, a subunit of glutamate-dependent, and a facilitator of cellular calcium influx in neuronal tissue. In this study, we found that Grin2d expression was higher in esophageal cancer than in normal mucosa at both the mRNA and protein level using RT-PCR, bioinformatics analysis, and western blotting (p<0.05). Grin2d mRNA expression was positively correlated with old age, white race, heavy weight, distal location, adenocarcinoma, cancer with Barrett's lesion, or high-grade columnar dysplasia (p<0.05). The differential genes associated with Grin2d mRNA were involved in fat digestion and absorption, cholesterol metabolism, lipid transfer, lipoproteins, synaptic membranes, and ABC transporters (p<0.05). The Grin2d-related genes were classified into the following categories: metabolism of glycerolipids, galactose, and O-glycan, cell adhesion binding, actin binding, cadherin binding, the Hippo signaling pathway, cell-cell junctions, desmosomes, DNA-transcription activator binding, and skin development and differentiation (p<0.05). Grin2d immunoreactivity was positively correlated with distal metastasis and unfavorable overall survival in esophageal cancer (p<0.05). Grin2d overexpression promoted proliferation, migration, and invasion in esophageal cancer cells but blocked apoptosis (p<0.05) and increased the expression of PI3K, Akt and p-mTOR. Grin2d knockout caused the opposite effects. These findings indicated that upregulated Grin2d expression played an important role in esophageal carcinogenesis via the PI3K/Akt/mTOR pathway and might be a biological marker for aggressive tumor behavior and poor prognosis. Its silencing might represent a targeted therapy approach against esophageal cancer.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jun Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, China
| | - Hang Xue
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Ning Yang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Wen-Jing Yun
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ming-Zhen Zhao
- Office of Research Affairs, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
6
|
Lan Y, Tian F, Tang H, Pu P, He Q, Duan L. Food therapy of scutellarein ameliorates pirarubicin‑induced cardiotoxicity in rats by inhibiting apoptosis and ferroptosis through regulation of NOX2‑induced oxidative stress. Mol Med Rep 2024; 29:84. [PMID: 38516760 PMCID: PMC10979251 DOI: 10.3892/mmr.2024.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart‑related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti‑inflammatory, antioxidant, cardio‑cerebral vascular protective and anti‑apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP‑induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin‑1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2‑induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.
Collapse
Affiliation(s)
- Ying Lan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Fengshun Tian
- Department of Endocrine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Quan He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Liang Duan
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
7
|
Zhang W, Zhao Y, Jia Y, Bai Y. Prognostic value of long noncoding RNA LINC00924 in lung adenocarcinoma and its regulatory effect on tumor progression. Histol Histopathol 2024; 39:595-602. [PMID: 37358073 DOI: 10.14670/hh-18-642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been used in the study of tumor biomarkers in recent years. However, the prognostic role of lncRNA LINC00924 (LINC00924) in lung adenocarcinoma (LUAD) has not yet been concluded. Therefore, this study investigates the prognostic value of LINC00924 in LUAD and its regulatory effect on tumor progression. PATIENTS AND METHODS The LUAD tissues and adjacent normal tissues of 128 subjects were extracted, and the expressions of LINC00924 and miR-196a-5p in tissues and cells were detected by RT-qPCR. The prognostic value of LINC00924 in LUAD patients was obtained by Kaplan-Meier analysis and multivariate Cox regression test. The cell counting kit-8 (CCK-8) and Transwell assay were used to detect the effect of overexpression LINC00924 on LUAD cells. RESULTS In LUAD tissues and cells, LINC00924 expression was down-regulated and miR-196a-5p expression was up-regulated compared with the normal control group. High expression of LINC00924 inhibited the proliferation level, migration ability and invasion situation of LUAD cells, which was more conducive to the survival and prognosis of LUAD patients. Bioinformatics studies indicated that overexpression of LINC00924 inhibited the development of LUAD by targeting miR-196a-5p, while miR-196a-5p mimic effectively weakened the inhibition. CONCLUSION LINC00924 sponges of miR-196a-5p may be considered as a potential prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yanan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanyuan Jia
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Wang L, Ma J, Chen C, Lin B, Xie S, Yang W, Qian J, Zhang Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front Pharmacol 2024; 15:1315001. [PMID: 38562460 PMCID: PMC10982373 DOI: 10.3389/fphar.2024.1315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| | - Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Qian
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| |
Collapse
|
9
|
Huang P, Zhang W, Ji J, Ma J, Cheng H, Qin M, Wei D, Ren L. LncRNA Miat knockdown protects against pirarubicin-induced cardiotoxicity by targeting miRNA-129-1-3p. ENVIRONMENTAL TOXICOLOGY 2023; 38:2751-2760. [PMID: 37471631 DOI: 10.1002/tox.23910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. The aim of this study was to investigate the protective effect and mechanism of knockdown of lncRNA Miat in THP-induced cardiotoxicity. The extent of damage to immortalized cardiomyocytes in mice was assessed by CCK8, TUNEL, ROS, Ca2+ , RT-qPCR, and Western blot. The relative levels of Miat in THP-treated cardiomyocytes (HL-1) were measured. The protective effect of Miat on THP-treated HL-1 was assessed. The binding relationship between lncRNA Miat and mmu-miRNA-129-1-3p was verified by a dual luciferase reporter gene assay. The protective role of Miat/miRNA-129-1-3p in THP-induced HL-1 was explored by performing a rescue assay. THP reduced cell viability, induced apoptosis, triggered oxidative stress and calcium overload. Expression of Miat in HL-1 was significantly elevated after THP treatment. Miat knockdown significantly alleviated the cardiotoxicity of THP. MiR-129-1-3p is a direct target of Miat. Knockdown of miR-129-1-3p reversed the protective effect of Miat knockdown on HL-1. Miat knockdown can alleviate THP-induced cardiomyocyte injury by regulating miR-129-1-3p.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhu M, Yan M, Chen J, Li H, Zhang Y. MicroRNA-129-1-3p attenuates autophagy-dependent cell death by targeting MCU in granulosa cells of laying hens under H 2O 2-induced oxidative stress. Poult Sci 2023; 102:103006. [PMID: 37595500 PMCID: PMC10458330 DOI: 10.1016/j.psj.2023.103006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
The present study aimed to investigate the mechanism of microRNA-129-1-3p (miR-129-1-3p) in regulating hydrogen peroxide (H2O2)-induced autophagic death of chicken granulosa cell by targeting mitochondrial calcium uniporter (MCU). The results indicated that the exposure of hens' ovaries to H2O2 resulted in a significant elevation in reactive oxygen species (ROS) levels, as well as the apoptosis of granulosa cells and follicular atresia. This was accompanied by an upregulation of glucose-regulated protein 75 (GRP75), voltage-dependent anion-selective channel 1 (VDAC1), MCU, mitochondria fission factor (MFF), microtubule-associated protein 1 light chain 3 (LC3) I, and LC3II expression, and a downregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and mitofusin-2 (MFN2) expression. In hens' granulosa cells, a luciferase reporter assay confirmed that miR-129-1-3p directly regulates MCU. The induction of oxidative stress through H2O2 resulted in the activation of the permeability transition pore, an overload of calcium, depolarization of the mitochondrial membrane potential, dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAMs), and ultimately, autophagic cell death. The overexpression of miR-129-1-3p effectively mitigated these H2O2-induced changes. Furthermore, miR-129-1-3p overexpression in granulosa cells prevented the alterations induced by H2O2 in the expression of key proteins that play crucial roles in maintaining the integrity of MAMs and regulating autophagy, such as GRP75, VDAC1, MFN2, PTEN-induced kinase 1 (Pink1), and parkin RBR E3 ubiquitin-protein ligase (Parkin). Together, these in vitro- and in vivo-based experiments suggest that miR-129-1-3p protects granulosa cells from oxidative stress-induced autophagic cell death by downregulating the MCU-mediated mitochondrial autophagy. miR-129-1-3p/MCU calcium signaling pathway may act as a new target to alleviate follicular atresia caused by oxidative stress in laying hens.
Collapse
Affiliation(s)
- Mingkun Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Huaiyu Li
- Qingdao Animal Husbandry Workstation (Qingdao Institute of Animal Science and Veterinary Medicine), Qingdao, Shandong 266100, China
| | - Yeshun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
11
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
12
|
Abdul-Rahman T, Dunham A, Huang H, Bukhari SMA, Mehta A, Awuah WA, Ede-Imafidon D, Cantu-Herrera E, Talukder S, Joshi A, Sundlof DW, Gupta R. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr Probl Cardiol 2023; 48:101591. [PMID: 36621516 DOI: 10.1016/j.cpcardiol.2023.101591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Collapse
Affiliation(s)
| | - Alden Dunham
- University of South Florida Morsani College of Medicine, FL
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Wireko A Awuah
- Sumy State University, Toufik's World Medical Association, Ukraine
| | | | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | | | - Amogh Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Deborah W Sundlof
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| | | |
Collapse
|
13
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
14
|
Qin M, Chen C, Wang N, Yu D, Yu S, Wang X, Liu T, Lv L, Guan Q. Total saponins of panax ginseng via the CX3CL1/CX3CR1 axis attenuates neuroinflammation and exerted antidepressant-like effects in chronic unpredictable mild stress in rats. Phytother Res 2022; 37:1823-1838. [PMID: 36581492 DOI: 10.1002/ptr.7696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Total saponins of Panax ginseng (TSPG) have antidepressant effects. However, the underlying antidepressant mechanism of TSPG remains not clear. This study aimed to predict the mechanism of TSPG by bioinformatics analysis and to verify it experimentally. Bioinformatics analysis showed that the antidepressant effects of TSPG may be related to inflammation, and CX3CL1/CX3CR1 may play a key mediating role. Wistar rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks, and TSPG (50 mg/kg/d, 100 mg/kg/d) was administered throughout the modeling period. It was found that TSPG improves depressive behavior and reduces neuropathic damage in the hippocampus in rats. Meanwhile, TSPG decreased mRNA and protein expression of pro-inflammatory cytokines and CX3CL1/CX3CR1 and inhibited P38 and JNK protein phosphorylation in the hippocampus. Rat astrocytes were employed to explore further the potential mechanism of TSPG in regulating CX3CL1/CX3CR1. The results showed that CX3CL1 small interfering RNA (siRNA-CX3CL1) and CX3CR1 inhibitor (JMS-17-2) had similar effects to TSPG, that is, reduced inflammatory response, reactive oxygen species (ROS), and phosphorylation of P38 and JNK proteins, while overexpression of CX3CL1 (pcDNA-CX3CL1) counteracted the above effects of TSPG. It is suggested that the antidepressant effect of TSPG may be achieved through inhibition of CX3CL1/CX3CR1.
Collapse
Affiliation(s)
- Meng Qin
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Chen Chen
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Ning Wang
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Di Yu
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Shangmin Yu
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Xinying Wang
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Tongyan Liu
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Linlin Lv
- School of Pharmacy, Jilin University, Changchun, PR China
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, Changchun, PR China
| |
Collapse
|
15
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
16
|
Liu X, Tian R, Tao H, Wu J, Yang L, Zhang Y, Meng X. The cardioprotective potentials and the involved mechanisms of phenolic acids in drug-induced cardiotoxicity. Eur J Pharmacol 2022; 936:175362. [DOI: 10.1016/j.ejphar.2022.175362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
17
|
Zhang M, Hu Y, Li H, Guo X, Zhong J, He S. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis. Front Genet 2022; 13:936937. [PMID: 36105099 PMCID: PMC9464939 DOI: 10.3389/fgene.2022.936937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Coronary artery disease (CAD) is a common cardiovascular disease that has attracted attention worldwide due to its high morbidity and mortality. Recent studies have shown that abnormal microRNA (miRNA) expression is effective in CAD diagnoses and processes. However, the potential relationship between miRNAs and CAD remains unclear. Methods: Microarray datasets GSE105449 and GSE28858 were downloaded directly from the Gene Expression Omnibus (GEO) to identify miRNAs involved in CAD. Target gene prediction and enrichment analyses were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results: There were nine differentially expressed miRNAs in CAD patients compared to the controls. A total of 352 genes were predicted and subjected to GO analysis, which showed that differentially expressed genes (DEGs) were mainly associated with axon guidance, neuron projection guidance, neuron-to-neuron synapses, and postsynaptic density. According to the KEGG pathway analysis, the most enriched pathways were those involved in transcriptional misregulation in cancer, growth hormone synthesis, secretion and action, endocrine resistance, axon guidance, and Cushing syndrome. Pathway analysis was mainly involved in the HIPPO and prion disease signaling pathways. Furthermore, a competing endogenous RNA (ceRNA) interaction network centered on miR-22-3p revealed eight related transcription factors in the cardiovascular system. The receiver operating characteristic (ROC) curve analysis suggested that miR-22-3p may be a better CAD predictor. Conclusion: The results indicate that miR-22-3p may function in pathophysiological CAD processes. Our study potentiates miR-22-3p as a specific biomarker for diagnosing CAD.
Collapse
Affiliation(s)
- Minghua Zhang
- Department of Cardiovascular Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Minghua Zhang,
| | - Yan Hu
- Nursing Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoda Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaozi Guo
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junhui Zhong
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sha He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
19
|
Schisandrin B Diet Inhibits Oxidative Stress to Reduce Ferroptosis and Lipid Peroxidation to Prevent Pirarubicin-Induced Hepatotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5623555. [PMID: 36060128 PMCID: PMC9433297 DOI: 10.1155/2022/5623555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 12/06/2022]
Abstract
Objective Pirarubicin (THP) is one of anthracycline anticancer drugs. It is widely used in the treatment of various cancers, but its hepatotoxicity cannot be ignored. Schisandrin B (SchB) is a traditional liver-protecting drug, which has the ability to promote mitochondrial function and upregulate cellular antioxidant defense mechanism. However, whether it can resist THP-induced hepatotoxicity has not been reported. The purpose of this study was to observe and explore the effect of SchB on THP-induced hepatotoxicity and its potential mechanism by adding SchB to the diet of rats with THP-induced hepatotoxicity. Methods The rat model of THP-induced hepatotoxicity was established and partly treated with SchB diet. The changes of serum liver function indexes ALT and AST were observed. The histomorphological changes of liver were observed by HE staining. The biomarker levels of oxidative stress in rat serum and liver were measured to observe oxidative stress state. The expressions of ferroptosis-related protein GPX4 and oxidative stress-related protein were detected by Western blot. Primary hepatocytes were prepared and cocultured with THP, SchB, and Fer-1 to detect the production of reactive oxygen species (ROS) and verify the above signal pathways. Results THP rats showed a series of THP-induced hepatotoxicity changes, such as liver function damage, oxidative stress, and ferroptosis. SchB diet effectively alleviated these adverse reactions. Further studies showed that SchB had strong antioxidant and antiferroptosis abilities in THP-induced hepatotoxicity. Conclusion SchB has obvious protective effect on THP-induced hepatotoxicity. The mechanism may be closely related to inhibiting oxidative stress and ferroptosis in the liver.
Collapse
|
20
|
MicroRNA-129-1-3p Represses the Progression of Triple-Negative Breast Cancer by Targeting the GRIN2D Gene. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1549357. [PMID: 35295962 PMCID: PMC8920657 DOI: 10.1155/2022/1549357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
The aberrant expression of miRNA is strongly linked to numerous stages of triple-negative breast cancer (TNBC) progression, and it plays an indispensable role in the process from tumor onset and progress to invasion and metastasis. In this study, we first transfected miR-129-1-3p mimics and inhibitor into MDA-MB-231 TNBC cells, respectively. Then, we assessed the pathological role of miR-129-1-3p in MDA-MB-231 cells. The results showed that miR-129-1-3p were successfully inserted into MDA-MB-231 cells. Besides, miR-129-1-3p could distinctively repress the growth, migration along with infiltration of MDA-MB-231 cells, which might be related to the inhibition of GRIN2D expression. Our results indicate that miR-129-1-3p was illustrated to serve as a tumor repressor via targeting GRIN2D in TNBC cells and highlight that the restoration of miR-129-1-3p might be a new treatment target for TNBC.
Collapse
|
21
|
Deng B, Tang X, Wang Y. Regulation and bioinformatic analysis of circ_0015891/miR-129-1-3p axis in methamphetamine-induced dopaminergic apoptosis. Front Endocrinol (Lausanne) 2022; 13:999211. [PMID: 36204112 PMCID: PMC9530452 DOI: 10.3389/fendo.2022.999211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (METH) abuse can result in severe neurotoxicity, for which the mechanism is not yet clear. In the present study, we investigated the role of noncoding RNAs in METH-induced dopaminergic neurotoxicity, and analyzed the underlying mechanism using bioinformatic methods. We confirmed by flow cytometry that miR-129-1-3p is involved in promoting dopaminergic apoptosis under METH treatment and its role could be inhibited by a high concentration of circ_0015891. Also, we combined transcriptomic data with bioinformatics to explore the downstream mechanism of miR-129-1-3p regulation of METH-induced apoptosis, highlighted the potentially pivotal figure of response to nutrition. Further bioinformatic analysis of circ_0015891 was conducted as well and showed that circ_0015891 was the sponge of various microRNAs that effect apoptosis by different mechanisms. Collectively, we found a novel circ_0015891/miR-129-1-3p axis that may be a promising therapeutic target for METH-induced dopaminergic neurotoxicity.
Collapse
|
22
|
Xiao H, Wang X, Li S, Liu Y, Cui Y, Deng X. Advances in Biomarkers for Detecting Early Cancer Treatment-Related Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:753313. [PMID: 34859069 PMCID: PMC8631401 DOI: 10.3389/fcvm.2021.753313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
With the gradual prolongation of the overall survival of cancer patients, the cardiovascular toxicity associated with oncology drug therapy and radiotherapy has attracted increasing attention. At present, the main methods to identify early cancer treatment-related cardiac dysfunction (CTRCD) include imaging examination and blood biomarkers. In this review, we will summarize the research progress of subclinical CTRCD-related blood biomarkers in detail. At present, common tumor therapies that cause CTRCD include: (1) Chemotherapy—The CTRCD induced by chemotherapy drugs represented by anthracycline showed a dose-dependent characteristic and most of the myocardial damage is irreversible. (2) Targeted therapy—Cardiovascular injury caused by molecular-targeted therapy drugs such as trastuzumab can be partially or completely alleviated via timely intervention. (3) Immunotherapy—Patients developed severe left ventricular dysfunction who received immune checkpoint inhibitors have been reported. (4) Radiotherapy—CTRCD induced by radiotherapy has been shown to be significantly associated with cardiac radiation dose and radiation volume. Numerous reports have shown that elevated troponin and B-type natriuretic peptide after cancer treatment are significantly associated with heart failure and asymptomatic left ventricular dysfunction. In recent years, a few emerging subclinical CTRCD potential biomarkers have attracted attention. C-reactive protein and ST2 have been shown to be associated with CTRCD after chemotherapy and radiation. Galectin-3, myeloperoxidas, placental growth factor, growth differentiation factor 15 and microRNAs have potential value in predicting CTRCD. In this review, we will summarize CTRCD caused by various tumor therapies from the perspective of cardio-oncology, and focus on the latest research progress of subclinical CTRCD biomarkers.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaojie Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Heart Failure and Structural Cardiology Ward, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yijie Cui
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoqin Deng
- Department of Radiation Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Moukette B, Barupala NP, Aonuma T, Sepulveda M, Kawaguchi S, Kim IM. Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods Cell Biol 2021; 166:309-348. [PMID: 34752338 DOI: 10.1016/bs.mcb.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nipuni P Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Marisa Sepulveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, United States; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
24
|
Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases. HEARTS 2021. [DOI: 10.3390/hearts2030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases.
Collapse
|
25
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
Li Q, Xu D, Gu Z, Li T, Huang P, Ren L. Rutin restrains the growth and metastasis of mouse breast cancer cells by regulating the microRNA-129-1-3p-mediated calcium signaling pathway. J Biochem Mol Toxicol 2021; 35:e22794. [PMID: 33913213 DOI: 10.1002/jbt.22794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Breast cancer is a common malignancy that is highly lethal. Due to the poor prognosis, more effective and efficient treatment methods are urgently needed. Rutin (RUT) is a traditional Chinese medicine reported to have a variety of pharmacological properties, including anticancer properties. However, the effects of RUT on breast cancer and its underlying molecular mechanism of action remain unclear. In the present study, we observed a significant downregulation of microRNA (miR)-129-1-3p in mouse breast cancer cells (4T1) compared with the expression in mouse normal breast epithelial cells (HC11). We also found that RUT could increase the expression of miR-129-1-3p in 4T1 cells and suppress cell proliferation. To elucidate the molecular mechanism of action of RUT, miR-129-1-3p mimics and its inhibitor were transfected into 4T1 cells. miR-129-1-3p overexpression could inhibit the proliferation, invasion, migration, and calcium overload of mouse breast cancer cells and also enhance apoptosis, whereas miR-129-1-3p knockdown had the opposite effects. Taken together, cell-based experiments indicated that RUT restrains the growth of mouse breast cancer cells by regulating the miR-129-1-3p/Ca2+ signaling pathway. This study also revealed the inhibitory effect of RUT on breast cancer cells at the noncoding RNA level and provided a theoretical foundation for the application of RUT as a drug to inhibit tumor growth.
Collapse
Affiliation(s)
- Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China.,Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zehui Gu
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Pei L, Shen X, Qu K, Tan C, Zou J, Wang Y, Ping F. Exploration of the Two-Way Adjustment Mechanism of Rhei Radix et Rhizoma for Cardiovascular Diseases. Comb Chem High Throughput Screen 2020; 23:1100-1112. [PMID: 32436824 DOI: 10.2174/1386207323666200521120308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Myocardial infarction, cerebral infarction, and other diseases caused by vascular obstruction have always jeopardized human life and health. Several reports indicate that Rhei Radix et Rhizoma has a good clinical effect in the prevention and treatment of cardiovascular diseases. Owing to the complexity of herbal medicine, the pharmacodynamic mechanism of Rhei Radix et Rhizoma is still unclear. The objectives of this study were to explore the two-way adjustment mechanism of Rhei Radix et Rhizoma and provide a new solution for the prevention and treatment of cardiovascular disease. MATERIALS AND METHODS This study used data mining, reverse pharmacophore matching, network construction, GO and KEGG Analysis, and molecular docking to investigate the two-way adjustment mechanism of Rhei Radix et Rhizoma. The methods used were based on systems pharmacology and big data analysis technology. RESULTS The results suggest that Rhei Radix et Rhizoma uses a two-way adjustment of activating blood circulation, as well as blood coagulation in the prevention and treatment of cardiovascular diseases. The components involved in activating blood circulation are mainly anthraquinone components. The corresponding targets are NOS2, NOS3, CALM1, and the corresponding pathways are calcium signaling pathway, VEGF signaling pathway, platelet activation, and the PI3K-Akt signaling pathway. For blood coagulation, the components are mainly tannin components; the corresponding targets are F2, F10, ELANE, and the corresponding pathways are the neuroactive ligand-receptor interaction, complement and coagulation cascades. CONCLUSION This study indicated that Rhei Radix et Rhizoma exerts the two-way adjustment of activating blood circulation and blood coagulation in the prevention and treatment of cardiovascular diseases. It can make up for the side effects of the existing blood circulation drugs for cardiovascular disease, only activating blood circulation, and the uncontrollable large-area bleeding due to the long-term use of the drugs. This study provides a material basis for the development of new blood-activating drugs based on natural medicine.
Collapse
Affiliation(s)
- Lishan Pei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xia Shen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Kai Qu
- Shaanxi Hospital of Chinese Medicine, Xi' an, Shaanxi, China
| | - Conge Tan
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yanxia Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Fan Ping
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
28
|
Li Q, Qin M, Tan Q, Li T, Gu Z, Huang P, Ren L. MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca 2+ signalling pathway. J Cell Mol Med 2020; 24:2260-2271. [PMID: 31957170 PMCID: PMC7011137 DOI: 10.1111/jcmm.14908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China.,The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Qi Tan
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zehui Gu
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|