1
|
Gong SQ, Liu H, Wu JL, Xu JX. Effects of daphnetin on the mechanism of epithelial-mesenchymal transition induced by HMGB1 in human lung adenocarcinoma cells (A549 cell line). Biotechnol Genet Eng Rev 2024; 40:1489-1510. [PMID: 36994673 DOI: 10.1080/02648725.2023.2194092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
As a cancer with the highest incidence in recent years, lung cancer is mainly composed of three diseases: non-small cell lung cancer, small cell lung cancer and neuroendocrine tumor. The morbidity and mortality of this malignant tumor are the highest in both male and female populations worldwide. In my country, lung cancer has become the most common cancer disease and the leading cause of cancer death, so it is extremely important to find lung cancer therapeutic targets. Based on previous studies, we speculated that the TLR4-Myd88-NFκB pathway may be involved in hmgb1-induced EMT in A549 cells, and daphnetin may also inhibit hmgb1-induced EMT through the TLR4-Myd88-NFκB pathway in A549 cells, but related studies have not linked it to hmgb1-induced EMT. Therefore, the innovation of this study is to test these two conjectures and analyze how daphnetin affects the epithelial-mesenchymal transition (EMT) mechanism induced by HMGB1 in human lung adenocarcinoma cells (A549 cell line), aiming at lung adenocarcinoma cells, foundation for clinical treatment. The proliferation rate and the migrating cell number presented an obvious decrease in the HMGB1+TLR4-shRNA group and the HMGB1+daphnetin group relative to the HMGB1 group (P < 0.0001). The intracellular expression of TLR4, Myd88, NFκB, vimentin and snail1 proteins were significantly decreased (P < 0.001), while that of E-cadherin presented a remarkable increase (P < 0.001) in the HMGB1+TLR4-shRNA and HMGB1+daphnetin group compared with the HMGB1 group. TLR4-MyD88-NFκB pathway is associated with HMGB1-induced EMT in A549 cells. Daphnetin had an inhibitory effect on HMGB1-induced EMT via the TLR4-Myd88-NF-κB pathway in A549 cells.
Collapse
Affiliation(s)
- Shu-Qi Gong
- Nanchang University, Nan Chang city, China
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Nanchang University, Nan Chang city, China
| | - Hua Liu
- Nanchang University, Nan Chang city, China
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Nanchang University, Nan Chang city, China
| | - Jin-Lan Wu
- Nanchang University, Nan Chang city, China
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Nanchang University, Nan Chang city, China
| | - Jiang-Xia Xu
- Nanchang University, Nan Chang city, China
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Nanchang University, Nan Chang city, China
| |
Collapse
|
2
|
Spella M, Bochalis E, Athanasopoulou K, Chroni A, Dereki I, Ntaliarda G, Makariti I, Psarias G, Constantinou C, Chondrou V, Sgourou A. "Crosstalk between non-coding RNAs and transcription factor LRF in non-small cell lung cancer". Noncoding RNA Res 2024; 9:759-771. [PMID: 38577020 PMCID: PMC10990748 DOI: 10.1016/j.ncrna.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epigenetic approaches in direct correlation with assessment of critical genetic mutations in non-small cell lung cancer (NSCLC) are currently very intensive, as the epigenetic components underlying NSCLC development and progression have attained high recognition. In this level of research, established human NSCLC cell lines as well as experimental animals are widely used to detect novel biomarkers and pharmacological targets to treat NSCLC. The epigenetic background holds a great potential for the identification of epi-biomarkers for treatment response however, it is highly complex and requires precise definition as these phenomena are variable between NSCLC subtypes and systems origin. We engaged an in-depth characterization of non-coding (nc)RNAs prevalent in human KRAS-mutant NSCLC cell lines A549 and H460 and mouse KRAS-mutant NSCLC tissue by Next Generation Sequencing (NGS) and quantitative Real Time PCRs (qPCRs). Also, the transcription factor (TF) LRF, a known epigenetic silencer, was examined as a modulator of non-coding RNAs expression. Finally, interacting networks underlying epigenetic variations in NSCLC subtypes were created. Data derived from our study highlights the divergent epigenetic profiles of NSCLC of human and mouse origin, as well as the significant contribution of 12qf1: 109,709,060-109,747,960 mouse chromosomal region to micro-RNA upregulated species. Furthermore, the novel epigenetic miR-148b-3p/lncPVT1/ZBTB7A axis was identified, which differentiates human cell line of lung adenocarcinoma from large cell lung carcinoma, two characteristic NSCLC subtypes. The detailed recording of epigenetic events in NSCLC and combinational studies including networking between ncRNAs and TFs validate the identification of significant epigenetic features, prevailing in NSCLC subtypes and among experimental models. Our results enrich knowledge in the field and empower research on the epigenetic prognostic biomarkers of the disease progression, NSCLC subtypes discrimination and advancement to patient-tailored treatments.
Collapse
Affiliation(s)
- Magda Spella
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyri Chroni
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Giannoula Ntaliarda
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Ifigeneia Makariti
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Caterina Constantinou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
3
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
4
|
Fang C, Wu W, Ni Z, Liu Y, Luo J, Zhou Y, Gong C, Hu D, Yao C, Chen X, Wang L, Zhu S. Ailanthone inhibits non-small cell lung cancer growth and metastasis through targeting UPF1/GAS5/ULK1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155333. [PMID: 38518633 DOI: 10.1016/j.phymed.2023.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbin Wu
- Experiment Animal Center, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongya Ni
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yangli Liu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufu Zhou
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yao
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Chen
- Department of Nei Jing, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Han H, Huang H, Chen AP, Tang Y, Huang X, Chen C. High CASC expression predicts poor prognosis of lung cancer: A systematic review with meta-analysis. PLoS One 2024; 19:e0292726. [PMID: 38573879 PMCID: PMC10994294 DOI: 10.1371/journal.pone.0292726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/26/2023] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The long non-coding RNA cancer susceptibility candidate (CASC) has abnormal expression in lung cancer tissues and may correlate with lung cancer prognosis. This study aimed to comprehensively evaluate the association between CASC expression and the cancer prognosis. METHODS PubMed, Embase, Web of Science, Google Scholar, Cochrane Library, and China National Knowledge Infrastructure databases were searched until April 1, 2023, to obtain the relevant literature. Studies that met the predefined eligibility criteria were included, and their quality was independently assessed by 2 investigators according to the Newcastle-Ottawa Scale (NOS) score. Detailed information was obtained, such as first author, year of publication, and number of patients. Hazard ratio (HR) with a 95% confidence interval (CI) was extracted and grouped to assess the relationship between CASC expression and cancer prognosis. The dichotomous data was merged and shown as the odds ratio (OR) with a 95% CI was extracted to assess the relationship between CASC expression and clinicopathological parameters. RESULTS A total of 12 studies with 746 patients with lung cancer were included in the meta-analysis. The expression levels of lncRNA CASC2 and CASC7 were decreased, while those of CASC9, 11, 15, and 19 were induced in lung cancer tissues compared with paracancerous tissues. In the population with low CASC expression (CASC2 and CASC7), high CASC expression indicated a good lung cancer prognosis (HR = 0.469; 95% CI, 0.271-0.668). Conversely, in the population with high CASC expression (CASC9, 11, 15, and 19), high CASC expression predicted a poor lung cancer outcome (HR = 1.910; 95% CI, 1.628-2.192). High CASC expression also predicted worse disease-free survival (DFS) (HR = 2.803; 95% CI, 1.804-6.319). Combined OR with 95% CI revealed an insignificant positive association between high CASC expression and advanced TNM stage (OR = 1.061; 95% CI, 0.775-1.454), LNM (OR = 0.962; 95% CI, 0.724-1.277), tumor size (OR = 0.942; 95% CI, 0.667-1.330), and histological grade (OR = 1.022; 95% CI, 0.689-1.517). CONCLUSION The CASC expression levels negatively correlate with lung cancer prognosis. Therefore, CASC expression may serve as a prognostic marker and a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Hao Han
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Huan Huang
- Department of Thoracic Surgery, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - An-ping Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Tang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Huang
- Department of Thoracic Surgery, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
He G, Gu K, Wei J, Zhang J. METTL3-mediated the m6A modification of SF3B4 facilitates the development of non-small cell lung cancer by enhancing LSM4 expression. Thorac Cancer 2024; 15:919-928. [PMID: 38462740 PMCID: PMC11016404 DOI: 10.1111/1759-7714.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Splicing factor B subunit 4 (SF3B4) has been confirmed to participate in the progression of many cancers and is considered to be a potential target for non-small cell lung cancer (NSCLC). Thus, the role and molecular mechanism of SF3B4 in NSCLC progression deserves further study. METHODS Quantitative real-time PCR and western blot were employed to detect the mRNA and protein levels of SF3B4, Sm-like protein 4 (LSM4) and methyltransferase-like 3 (METTL3). Cell proliferation, apoptosis, invasion, migration and stemness were tested by cell counting kit-8, colony formation, flow cytometry, transwell, wound healing, and sphere formation assays. The interaction between SF3B4 and METTL3 or LSM4 was confirmed by MeRIP, RIP and Co-IP assays. Mice xenograft models were constructed to assess the effects of METTL3 and SF3B4 on NSCLC tumorigenesis. RESULTS SF3B4 had high expression in NSCLC tissues and was associated with the shorter overall survival of NSCLC patients. Knockdown of SF3B4 suppressed NSCLC cell proliferation, invasion, migration and stemness, while inducing apoptosis. METTL3 promoted SF3B4 mRNA stability by m6A modification, and its knockdown inhibited NSCLC cell growth, metastasis and stemness by downregulating SF3B4. SF3B4 could interact with LSM4, and sh-SF3B4-mediated the inhibition on NSCLC cell functions could be reversed by LSM4 overexpression. In addition, reduced METTL3 expression restrained NSCLC tumor growth, and this effect was reversed by SF3B4 overexpression. CONCLUSION METTL3-stablized SF3B4 promoted NSCLC cell growth, metastasis and stemness via positively regulating LSM4.
Collapse
Affiliation(s)
- Guangsi He
- Department of Oncologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Second Department of OncologyFirst People's Hospital of ChuzhouChuzhouChina
| | - Kangsheng Gu
- Department of Oncologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jie Wei
- First Department of OncologyFirst People's Hospital of ChuzhouChuzhouChina
| | - Jian Zhang
- Second Department of OncologyFirst People's Hospital of ChuzhouChuzhouChina
| |
Collapse
|
8
|
LI KUNLUN, LI DANDAN, HAFEZ BARBOD, BEKHIT MOUNIRMSALEM, JARDAN YOUSEFABIN, ALANAZI FARSKAED, TAHA EHABI, AUDA SAYEDH, RAMZAN FAIQAH, JAMIL MUHAMMAD. Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC). Oncol Res 2024; 32:737-752. [PMID: 38560573 PMCID: PMC10972725 DOI: 10.32604/or.2023.042925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.
Collapse
Affiliation(s)
- KUNLUN LI
- The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - DANDAN LI
- Department of Pharmaceutical Engineering, Jiangsu Ocean University, Lianyungang, China
| | - BARBOD HAFEZ
- Department of Biological Engineering, University of Salford, Salford, UK
| | - MOUNIR M. SALEM BEKHIT
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - YOUSEF A. BIN JARDAN
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - FARS KAED ALANAZI
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - EHAB I. TAHA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - SAYED H. AUDA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - FAIQAH RAMZAN
- Department of Animal and Poultry Production, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - MUHAMMAD JAMIL
- Department of Arid Zone Research, PARC institute, Dera Ismail Khan, Pakistan
| |
Collapse
|
9
|
Yin C, Li J, Li S, Yang X, Lu Y, Wang C, Liu B. LncRNA-HOXC-AS2 regulates tumor-associated macrophage polarization through the STAT1/SOCS1 and STAT1/CIITA pathways to promote the progression of non-small cell lung cancer. Cell Signal 2024; 115:111031. [PMID: 38168631 DOI: 10.1016/j.cellsig.2023.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.
Collapse
Affiliation(s)
- Cunli Yin
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Jing Li
- Department of General Internal Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China Chengdu, China
| | - Siru Li
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Xi Yang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, China
| | - Yingchun Lu
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Chunyu Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China Chengdu, China.
| |
Collapse
|
10
|
Wang D, Zu Y, Sun W, Fan X. SETD1A-mediated Methylation of H3K4me3 Inhibits Ferroptosis in Non-small Cell Lung Cancer by Regulating the WTAPP1/WTAP Axis. Curr Med Chem 2024; 31:3217-3231. [PMID: 37231753 DOI: 10.2174/0929867330666230525143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION SETD1A is upregulated in non-small cell lung cancer (NSCLC) tissues. This study investigated the molecular mechanism of the SETD1A/WTAPP1/WTAP axis in NSCLC. METHODS Ferroptosis is a unique cell death mode driven by iron-reliant phospholipid peroxidation, which is regulated by multiple cellular metabolic pathways, including REDOX homeostasis, iron metabolism, mitochondrial activity and metabolism of amino acids, lipids and sugars. Thus, the levels of ferroptosis markers (MDA, SOD, GSH) were measured in vitro, and NSCLC cell behaviors were assessed. SETD1A-mediated H3K4me3 methylation was analyzed. SETD1A-exerted effects on ferroptosis and tumor growth in vivo were verified in nude mouse models. RESULTS SETD1A was highly expressed in NSCLC cells. Silencing SETD1A suppressed NSCLC cell proliferation and migration, inhibited MDA, and enhanced GPX4, SOD, and GSH levels. SETD1A elevated WTAP expression through WTAPP1 upregulation by mediating H3K4me3 methylation in the WTAPP1 promoter region. WTAPP1 overexpression partly averted the promotional effect of silencing SETD1A on NSCLC cell ferroptosis. WTAP interference abrogated the inhibitory effects of WTAPP1 on NSCLC cell ferroptosis. Silencing SETD1A facilitated ferroptosis and accelerated tumor growth in nude mice through the WTAPP1/WTAP axis. CONCLUSION SETD1A amplified WTAP expression through WTAPP1 upregulation by mediating H3K4me3 modification in the WTAPP1 promoter region, thus promoting NSCLC cell proliferation and migration and inhibiting ferroptosis.
Collapse
Affiliation(s)
- Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Xiaowu Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
11
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
12
|
Al-Hawary SIS, Kashikova K, Ioffe EM, Izbasarova A, Hjazi A, Tayyib NA, Alsalamy A, Hussien BM, Hameed M, Abdalkareem MJ. Pathological role of LncRNAs in immune-related disease via regulation of T regulatory cells. Pathol Res Pract 2023; 249:154709. [PMID: 37586216 DOI: 10.1016/j.prp.2023.154709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Human regulatory T cells (Tregs) are essential in pathogenesis of several diseases such as autoimmune diseases and cancers, and their imbalances may be promoting factor in these disorders. The development of the proinflammatory T cell subset TH17 and its balance with the generation of regulatory T cells (Treg) is linked to autoimmune disease and cancers. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in a variety of diseases and can regulate the expression of significant genes at multiple levels through epigenetic regulation and by modulating transcription, post-transcriptional processes, translation, and protein modification. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structural makeup. LncRNAs are implicated in a range of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. In this regard, a prominent example is lncRNA NEAT1 which several studies have performed to determine its role in the differentiation of immune cells. Many other lncRNAs have been linked to Treg cell differentiation in the context of immune cell differentiation. In this study, we review recent research on the various roles of lncRNAs in differentiation of Treg cell and regulation of the Th17/Treg balance in autoimmune diseases and tumors in which T regs play an important role.
Collapse
Affiliation(s)
| | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | - Elena M Ioffe
- Department of Military Clinical Hospital, Ministry of Defence, Almaty, Kazakhstan.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
13
|
Wu W, Zhu S, Wu Y, Dai L, Zhao J, Jiang Z. Long intergenic non-protein-coding RNA 1547 acts as a competing endogenous RNA and exerts cancer-promoting activity in non-small cell lung cancer by targeting the microRNA-195-5p/ homeobox C8 axis. Heliyon 2023; 9:e18015. [PMID: 37560663 PMCID: PMC10407678 DOI: 10.1016/j.heliyon.2023.e18015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Long intergenic non-protein coding RNA 1547 (LINC01547) presents a notable relationship with prognosis in patients with ovarian cancer. Herein, we examined the expression of LINC01547 in non-small cell lung cancer (NSCLC) to ascertain its clinical significance. We also explored the detailed functions of LINC01547 in regulating the aggressive phenotype of NSCLC and the molecular mechanism of action underlying its carcinogenic activities events in NSCLC. Furthermore, we applied the data acquired from the tissue specimens and the Cancer Genome Atlas (TCGA) database to analyze the level of LINC01547 in NSCLC and conducted functional assays to address the regulatory effect of LINC01547. Further, we examined the mechanistic interaction among LINC01547, microRNA-195-5p (miR-195-5p), and homeobox C8 (HOXC8) using bioinformatics prediction and luciferase reporter assay. LINC01547 was noticeably overexpressed, as affirmed by data from TCGA and our own cohort; moreover, poor prognosis was associated with increased LINC01547 levels in patients with NSCLC. LINC01547 regulates cell proliferation, colony-forming, migration, and invasion, and its absence produced tumor-repressing effects in NSCLC. Mechanistically, as a competitive endogenous RNA, LINC01547 decoyed miR-195-5p and consequently resulted in the overexpression of HOXC8 in NSCLC cells. Using rescue experiments, we found that the regulatory activities of LINC01547 deficient in repressing the malignant properties of NSCLC cells could be counteracted by hindering miR-195-5p or overexpressing HOXC8. Conclusively, LINC01547 serves as a crucial component to worsen the oncogenicity of NSCLC cells by controlling the miR-195-5p/HOXC8 axis. Thus, the newly identified competing endogenous RNA pathway may potentially be an attractive therapeutic for NSCLC management.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Siyu Zhu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
- Baiyun Lake Community Health Service Center of Baiyun District, Guangzhou 510450, China
| | - Yonghui Wu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
14
|
Feng Y, Wu F, Wu Y, Guo Z, Ji X. LncRNA DGUOK-AS1 facilitates non-small cell lung cancer growth and metastasis through increasing TRPM7 stability via m6A modification. Transl Oncol 2023; 32:101661. [PMID: 37037089 PMCID: PMC10120365 DOI: 10.1016/j.tranon.2023.101661] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification plays key roles in tumor progression. LncRNA deoxyguanosine kinase antisense RNA 1 (DGUOK-AS1) has been reported as a promoter in tumors, but its role and mechanism in non-small cell lung cancer (NSCLC) development remain uncertain. METHODS Cell proliferation, migration, invasion and angiogenesis were investigated via CCK-8, colony formation, transwell, and tube formation assays, respectively. The location of DGUOK-AS1 was detected via FISH assay. The interaction relationship among DGUOK-AS1, IGF2BP2 and TRPM7 was confirmed by RIP and MeRIP assays. The effects of DGUOK-AS1 on NSCLC growth and metastasis in vivo were investigated using xenograft and pulmonary metastatic models. RESULTS DGUOK-AS1 was upregulated in NSCLC. DGUOK-AS1 silencing inhibited NSCLC cell proliferation, migration, invasion and angiogenesis. DGUOK-AS1 was mostly expressed in cytoplasm, and positively regulated IGF2BP2. METTL3/IGF2BP2 axis could increase TRPM7 mRNA stability in m6A-dependent manner. TRPM7 overexpression reversed the inhibitive function of DGUOK-AS1 silencing on NSCLC development. DGUOK-AS1 knockdown suppressed NSCLC cell growth and metastasis in nude mice. CONCLUSION DGUOK-AS1 silencing restrains NSCLC cell growth and metastasis through decreasing TRPM7 stability via regulation of the METTL3/IGF2BP2-mediated m6A modification.
Collapse
Affiliation(s)
- Yimin Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Fengjuan Wu
- Department of Pulmonary and Critical Care Medicine, Heze Municipal Hospital, Heze, Shandong 274031, China
| | - Yuanning Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China
| | - Zihan Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China
| | - Xiang Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, No.16766 Jingshi Road, Jinan, Shandong 250014, China.
| |
Collapse
|
15
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
16
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
17
|
Serum-derived extracellular vesicles promote the growth and metastasis of non-small cell lung cancer by delivering the m6A methylation regulator HNRNPC through the regulation of DLGAP5. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04375-6. [PMID: 36175801 DOI: 10.1007/s00432-022-04375-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Serum-derived extracellular vesicles (EVs) have been reported to play an important role in non-small cell lung cancer (NSCLC). The current study sought to explore the effect of serum-EVs delivering m6A methylation regulator heterogeneous nuclear ribonucleoprotein C (HNRNPC) on the development of NSCLC through the regulation of discs large-associated protein 5 (DLGAP5). METHODS NSCLC-related RNA-Seq and clinical data were first obtained from the TCGA database to screen differentially expressed m6A-related regulators, which were intersected with the differential genes in NSCLC-related microarray GSE43458 obtained from the GEO database for survival analysis and clinical correlation analysis. Correlation between HNRNPC and DLGAP5 expression was evaluated. Serum-EVs were isolated and identified, and the uptake of EVs by A549 cells was visualized using fluorescence microscopy. In vivo xenograft tumor models and tumor metastasis models were constructed in nude mice to observe growth and metastasis of NSCLC cells. RESULTS HNRNPC was associated with poor prognosis and metastasis of NSCLC, and further implicated in the regulation of DNA replication and cell cycle-related pathways. HNRNPC might promote the growth and metastasis of NSCLC by identifying m6A modification of DLGAP5 mRNA. Serum-EVs delivered HNRNPC to NSCLC cells in vitro. In vivo experimentation further confirmed that serum-EVs could deliver HNRNPC to promote the growth and metastasis of NSCLC cells in nude mice. CONCLUSIONS Our findings highlight that serum-EVs can deliver HNRNPC to NSCLC cells, wherein HNRNPC recognizes the m6A modification of DLGAP5 mRNA, thus ultimately promoting NSCLC growth and metastasis.
Collapse
|
18
|
Yang D, Niu Y, Ni H, Leng J, Xu X, Yuan X, Chen K, Wu Y, Wu H, Lu H, Xu J, Wang L, Jiang Y, Cui D, Hu J, Xia D, Wu Y. Identification of metastasis-related long non-coding RNAs in lung cancer through a novel tumor mesenchymal score. Pathol Res Pract 2022; 237:154018. [PMID: 35914372 DOI: 10.1016/j.prp.2022.154018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been proven to play critical roles in epithelial-mesenchymal transition (EMT) and metastasis of lung cancer. However, the biological functions and related mechanisms of lncRNAs are unclear. In addition, the EMT-based prognosis prediction in lung cancer still lacks investigation. Here, we established the methodology of identifying critical metastasis-related lncRNAs using comprehensive datasets of cancer transcriptome, genome and epigenome, and also provided tools for prognosis prediction in lung cancer. Initially, important mesenchymal marker genes were identified to compose the tumor mesenchymal score, which predicted patient prognosis in lung cancer, especially lung adenocarcinoma (LUAD). The score was also correlated with several crucial biological and physiological processes, such as tumor immune and hypoxia. Based on the score, lung cancer patients was classified into epithelial and mesenchymal subtypes, and lncRNAs which exhibited expressional dysregulation, promotor methylation alteration and copy number variation between the two subtypes in LUAD were identified and underwent further prognostic analyses. Finally, we identified 14 lncRNAs as EMT-related and significant biomarkers in prognosis prediction of LUAD. As validation, lncRNA RBPMS-AS1 was proven to be co-expressed with epithelial biomarkers, suppressive for A549 cell migration, invasion and EMT, and also significantly associated with better outcomes of LUAD patients, suggesting the potential of RBPMS-AS1 to serve as a lncRNA epithelial biomarker in metastasis of LUAD. Based on the identified lncRNAs, an EMT-linked lncRNA prognostic signature was further established. Taken together, our study provides robust predictive tools, potential lncRNA targets and feasible screening strategies for future study of lung cancer metastasis.
Collapse
Affiliation(s)
- Dexin Yang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Heng Ni
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Leng
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xian Xu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haohua Lu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Jiang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongyu Cui
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
19
|
Tan Y, Xu F, Xu L, Cui J. Long non‑coding RNA LINC01748 exerts carcinogenic effects in non‑small cell lung cancer cell lines by regulating the microRNA‑520a‑5p/HMGA1 axis. Int J Mol Med 2022; 49:22. [PMID: 34970695 PMCID: PMC8722766 DOI: 10.3892/ijmm.2021.5077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 12/09/2022] Open
Abstract
The important functions of long non‑coding RNAs in the malignancy of non‑small cell lung cancer (NSCLC) has been increasingly highlighted. However, whether LINC01748 functions in a crucial regulatory role still requires further research. The aim of the present study was to investigate the biological roles of LINC01748 in NSCLC. Furthermore, different experiments were utilized to investigate the mechanism of action of LINC01748 in 2 NSCLC cell lines. Reverse transcription‑quantitative PCR was used to measure mRNA expression levels. Cell Counting Kit‑8 assay, flow cytometry analysis and Transwell and Matrigel assays were also used to analyze, cell viability, apoptosis, and migration and invasion, respectively. A tumor xenograft model was used for in vivo experiments. RNA immunoprecipitation experiments, luciferase reporter assays and rescue experiments were used to investigate the mechanisms involved. Data from The Cancer Genome Atlas dataset and patients recruited into the present study showed that LINC01748 was overexpressed in NSCLC. Patients with high LINC01748 mRNA expression level had shorter overall survival rate compared with that in patients with low LINC01748 mRNA expression level. Then, knockdown of LINC01748 mRNA expression level reduced cell proliferation, migration and invasion, but increased cell apoptosis in vitro. Knockdown of LINC01748 also reduced tumor growth in vivo. Mechanistically, LINC01748 could act as a competing endogenous (ce)RNA to sponge microRNA(miR)‑520a‑5p, to increase the expression level of the target gene, high mobility group AT‑hook 1 (HMGA1) in the NSCLC cell lines. Furthermore, rescue experiments illustrated that the functions exerted by LINC01748 knockdown were negated by miR‑520a‑5p inhibition or HMGA1 overexpression. In summary, LINC01748 acted as a ceRNA by sponging miR‑520a‑5p, leading to HMGA1 overexpression, thus increasing the aggressiveness of the NSCLC cells. Accordingly, targeting the LINC01748/miR‑520a‑5p/HMGA1 pathway may benefit NSCLC therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HMGA1a Protein/genetics
- HMGA1a Protein/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yinling Tan
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Fengxia Xu
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Lingling Xu
- Department of Oncology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Jianying Cui
- Department of Respiratory, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
20
|
Wang Y, Zhang J, Zhong L, Huang S, Yu N, Ouyang L, Niu Y, Chen J, Lu C, He Q. Hsa-miR-335 enhances cell migration and invasion in lung adenocarcinoma through targeting Copine-1. MedComm (Beijing) 2021; 2:810-820. [PMID: 34977878 PMCID: PMC8706762 DOI: 10.1002/mco2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Lung adenocarcinoma (LAC) is one of the most common pulmonary adenocarcinomas with a high peak of mortality, and metastasis is the main culprit of LAC deaths. microRNAs play important role in cancer metastasis, and thus are regarded as potential diagnostic and prognostic markers for human cancers. However, many miRNAs exhibit dual roles in diverse cellular contexts. Here, we revealed that hsa-miR-335, a previously reported tumor suppressor, exhibited an oncogenic role in LAC. Overexpression of miR-335 enhanced the abilities of A549 and H1299 cells to invade and migrate by regulating epithelial-mesenchymal transition, while inhibition of miR-335 exhibited an opposite effect in vitro and in vivo. Mechanically, miR-335 inhibited the expression of Copine-1 (CPNE1), an NF-κB suppressor, through interacting with its mRNA 3'UTR, while mutating the binding sites abolished this inhibitory effect. This finding not only highlights the suppressive effect of CPNE1 on cell motility, but also provides new insight into miR-335 in promoting LAC metastasis.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
- The First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Li‐Ye Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Shang‐Jia Huang
- Gastrointestinal SurgeryThe First People's Hospital of FoShanFoshanChina
| | - Nan‐Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yu‐Long Niu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jun‐Xiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chun‐Hua Lu
- Research Laboratory of Zhuang & Yao MedicineGuangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
- The First Affiliated HospitalJinan UniversityGuangzhouChina
| |
Collapse
|
21
|
Wang FX, Gao FY, Liu X, Chen XY, Tian D, Tian XY, Jiao ZM, Hou PY. Long non-coding RNA expression in silicosis and MRAK050699 function in epithelial-mesenchymal transition. Hum Exp Toxicol 2021; 40:S763-S774. [PMID: 34779285 DOI: 10.1177/09603271211059503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silicosis is a lung fibrotic disease caused by chronic silica exposure. Aberrations in long non-coding RNA (lncRNA) expression are associated with fibrotic diseases, but the role of lncRNAs in silicosis pathogenesis remains unclear. Here, we investigated the expression of lncRNAs during silicosis and the role of MRAK050699 in epithelial-mesenchymal transition (EMT). Differentially expressed lncRNAs in the lung tissues of normal and silicosis rats were compared, and their biological effects were determined using the Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. There were 1077 differentially expressed lncRNAs (378 upregulated and 699 downregulated). MRAK052509, MRAK139674, AY539881, MRAK050699, XR_6113, and BC167061 were selected to verify expression in silicosis rats using quantitative reverse transcription polymerase chain reaction. MRAK050699 was knocked down in rat alveolar type II epithelial cells, and the molecular mechanism of transforming growth factor-β (TGF-β)-induced EMT in these cells was studied. All selected lncRNAs were upregulated in the silicosis rats, consistent with the sequencing results. MRAK050699 knockdown inhibited EMT of RLE-6TN cells by regulating the TGF-β/Smad3 signaling pathway. Thus, the differential expression of lncRNAs is related to silicosis development, and MRAK050699 plays an important role in EMT, suggesting a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Fa-Xuan Wang
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Fang-Yu Gao
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuan Liu
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xi-Yuan Chen
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Di Tian
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xue-Yan Tian
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Zi-Ming Jiao
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Peng-Yi Hou
- School of Public Health and Management, 105002Ningxia Medical University, Yinchuan, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| |
Collapse
|
22
|
Qian Y, Li Y, Li R, Yang T, Jia R, Ge YZ. circ-ZNF609: A potent circRNA in human cancers. J Cell Mol Med 2021; 25:10349-10361. [PMID: 34697887 PMCID: PMC8581316 DOI: 10.1111/jcmm.16996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/22/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel group of endogenous RNAs with a circular structure. Growing evidence indicates that circRNAs are involved in a variety of human diseases including malignancies. CircRNA ZNF609 (circ‐ZNF609), derived from the ZNF609 gene sequence, has been demonstrated to be involved in the development and progression of many diseases. circ‐ZNF609 is thought to be a viable diagnostic and prognostic biomarker for several diseases and might be a new therapeutic target, but further research is needed to accelerate clinical application. Here, we review the biogenesis and function of circRNAs and the functional roles and molecular mechanism related to circ‐ZNF609 in neoplasms and other diseases.
Collapse
Affiliation(s)
- Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Hu R, Bi R, Jiang L, Yang X, Zhong Y, Xie X. LncRNA TUSC8 suppresses the proliferation and migration of esophageal cancer cells by downregulation of VEGFA. J Cancer 2021; 12:6393-6400. [PMID: 34659529 PMCID: PMC8489135 DOI: 10.7150/jca.57814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Objective: This study aims to determine the expression pattern of long non-coding RNA (lncRNA) TUSC8 in esophageal cancer tissues and cell lines, to investigate its effects on esophageal cancer cell proliferation and migration, and to explore the mechanism of TUSC8-mediated esophageal cancer suppression via VEGFA downregulation. Patients and Methods: TUSC8 levels in esophageal cancer tissues and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The influence of TUSC8 on clinical features in esophageal cancer patients was analyzed. After intervening TUSC8 expression in esophageal cancer cells, the proliferative and migratory abilities were examined in OE19 and TE-1 cells through a series of function experiments. The interaction between TUSC8 and VEGFA was assessed by the bioinformatics prediction and dual-luciferase reporter assay. Finally, the co-regulation of TUSC8 and VEGFA on esophageal cancer cell functions was evaluated. Results: TUSC8 was downregulated in esophageal cancer tissues compared with normal ones. Identically, decreased TUSC8 expression was detected in esophageal cancer cell lines compared with control cells. Low TUSC8 expression predicted poor prognosis in patients with esophageal cancer. Knockdown of TUSC8 promoted the proliferative and migratory abilities in OE19 cells, whereas overexpression of TUSC8 resulted in opposite results in TE-1 cells. VEGFA was confirmed to be a target gene of TUSC8. Overexpression of VEGFA could reverse the regulatory effects of TUSC8 on esophageal cancer cell proliferation and migration. Conclusions: LncRNA TUSC8 is downregulated in esophageal cancer tissues and cell lines. TUSC8 inhibits the proliferative and migratory abilities in esophageal cancer cells in vitro by negatively regulating VEGFA.
Collapse
Affiliation(s)
- Rui Hu
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Rui Bi
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuhui Yang
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuan Zhong
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao Xie
- Department of Cardiothoracic Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
24
|
Li M, Yang B, Li X, Ren H, Zhang L, Li L, Li W, Wang X, Zhou H, Zhang W. Identification of Prognostic Factors Related to Super Enhancer-Regulated ceRNA Network in Metastatic Lung Adenocarcinoma. Int J Gen Med 2021; 14:6261-6275. [PMID: 34629892 PMCID: PMC8493278 DOI: 10.2147/ijgm.s332317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction The regulatory mechanisms of super enhancers (SEs) and ceRNA networks in LUAD progression are not well understood. We aimed to discover the prognostic-related ceRNA network regulated by SEs in metastatic LUAD. Methods RNA-seq data were extracted from The Cancer Genome Atlas (TCGA) database. Differentially expressed (DE) RNAs were identified by edgeR. CeRNA network was predicted and visualized using starBase and Cytoscape. H3K27ac ChIP-seq data were derived from the Gene Expression Omnibus (GEO) database, and used for SE identification. Kaplan–Meier curve and multivariate Cox model were applied for prognostic analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) network were performed for functional analysis. SEs of AC074117.1 were verified by ChIP-qPCR in A549 and H1299 cells. MTT assay was performed to analyze cell proliferation. Luciferase activity assay was carried out to validate the target targeting relationships of ceRNA network. Results A total of 2355 DEmRNA, 483 DElncRNA and 155 DEmiRNA were identified between metastatic LUAD and adjacent normal tissues. CeRNA network consisting of 7 DElncRNAs, 18 DEmiRNAs and 15 DEmRNAs was constructed. Among the seven DElncRNAs in ceRNA network, only AC074117.1 was regulated by SEs. SE-regulated prognostic ceRNA sub-network consisting of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p was screened and verified. The overlapping co-expressed mRNAs of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p were mainly related to cell division and Fanconi anemia pathway. Genes in the ceRNA sub-network were correlated with DNA mismatch repair markers. Functional experiments proved that AC074117.1 was highly expressed in LUAD cells. AC074117.1 silencing notably inhibited proliferation of A549 and H1299 cells. Luciferase activity assay confirmed the direct relationship in AC074117.1-hsa-let-7c-5p-FKBP3/E2F2 network. Conclusion A novel prognostic ceRNA sub-network regulated by SEs was identified in metastatic LUAD. This study provided potential therapeutic targets and prognostic markers for further study of metastatic LUAD.
Collapse
Affiliation(s)
- Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xuhui Wang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Honggang Zhou
- College of Pharmacy, Nankai University, State Key Laboratory of Medicinal Chemical Biology, Tianjin, People's Republic of China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| |
Collapse
|
25
|
Liu Y, Zhao Q, Xi T, Zheng L, Li X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: Implications in personalized medicine. Genes Dis 2021; 8:759-768. [PMID: 34522706 PMCID: PMC8427239 DOI: 10.1016/j.gendis.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis, is a development of secondary tumor growths at a distance from the primary site, and closely related to poor prognosis and mortality. However, there is still no effective treatment for metastatic cancer. Therefore, there is an urgent need to find an effective therapy for cancer metastasis. Plenty of evidence indicates that miR-9 can function as a promoter or suppressor in cancer metastasis and coordinate multistep of metastatic process. In this review, we summarize the different roles of miR-9 with the corresponding molecular mechanisms in metastasis of twelve common cancers and the multiple mechanisms underlying miR-9-mediated regulation of metastasis, benefiting the further research of miR-9 and metastasis, and hoping to bridge it with clinical applications.
Collapse
Affiliation(s)
- Yichen Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China.,School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China
| |
Collapse
|
26
|
Wang LF, Wu LP, Wen JD. LncRNA AC079630.4 expression associated with the progression and prognosis in lung cancer. Aging (Albany NY) 2021; 13:18658-18668. [PMID: 34282054 PMCID: PMC8351710 DOI: 10.18632/aging.203310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Mounting evidence has demonstrated the important role of long non-coding RNAs (lncRNAs) in the development and progression of lung cancer. In this study, we combined the methods of bioinformatics analysis and experimental validation, and aim to investigate the clinical significance and underlying mechanism of the novel lncRNA AC079630.4 in lung cancer. Finally, we found that AC079630.4 was significantly down-regulated in lung cancer tissues, including in its subtypes. Samples with low AC079630.4 expression had a more advanced pathological stage and a worse prognosis than those with high expression. In functional prediction, the KEGG pathway of apoptosis and the TRAIL signaling pathway were enriched in the samples with high AC079630.4 expression. In experimental validation, AC079630.4 over-expression could significantly inhibit the proliferation and clonality, and up-regulated the receptors of TRAIL (TRAIL-R1 and TRAIL-R2) in lung cancer cells. In conclusion, we adopted the methods of bioinformatics analysis and experimental validation, and identified a novel lncRNA of AC079630.4 as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Li-Fang Wang
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Li-Ping Wu
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jian-Dong Wen
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| |
Collapse
|
27
|
Wang X, Cheng Z, Dai L, Jiang T, Li P, Jia L, Jing X, An L, Liu M, Wu S, Wang Y. LncRNA PVT1 Facilitates Proliferation, Migration and Invasion of NSCLC Cells via miR-551b/FGFR1 Axis. Onco Targets Ther 2021; 14:3555-3565. [PMID: 34113122 PMCID: PMC8180410 DOI: 10.2147/ott.s273794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) plays a crucial role in non-small cell lung cancer (NSCLC). Nonetheless, regulatory effects of PVT1 on functions of NSCLC cells remain blurry. Methods Relative expression levels of PVT1, miR-551b and FGFR1 mRNA in tumor tissues and cells were examined employing quantitative real-time polymerase chain reaction (qRT-PCR); CCK-8 and BrdU assays were utilized for measuring cell viability and proliferation of H1299 and A549 cells; cell migration and invasion were detected deploying Transwell assay; dual-luciferase assay was used for the validation of binding sequence between PVT1 and miR-551b. FGFR1 expression in protein level was quantified employing Western blot. Results PVT1 was highly expressed in NSCLC tissues and cell lines, whereas miR-551b expression was down-regulated. Overexpression of PVT1 potentiated viability, proliferation, migration and invasion of NSCLC cells while miR-551b inhibited the biological behaviors mentioned above. MiR-551b was predicted and then confirmed as a direct downstream target of PVT1. Meanwhile, a negative correlation was observed between PVT1 expression and miR-551b expression in NSCLC tissues. Besides, PVT1 could increase FGFR1 expression by repressing miR-551b expression. Conclusion PVT1 promotes the proliferation, migration and invasion of NSCLC cells by indirectly mediating FGFR1 via targeting miR-551b.
Collapse
Affiliation(s)
- Xi Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhe Cheng
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lingling Dai
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Tianci Jiang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Pengfei Li
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liuqun Jia
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaogang Jing
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin An
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Meng Liu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shujun Wu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yu Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
28
|
Deng H, Hang Q, Shen D, Zhang Y, Chen M. Low expression of CHRDL1 and SPARCL1 predicts poor prognosis of lung adenocarcinoma based on comprehensive analysis and immunohistochemical validation. Cancer Cell Int 2021; 21:259. [PMID: 33980221 PMCID: PMC8117659 DOI: 10.1186/s12935-021-01933-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Exploring the molecular mechanisms of lung adenocarcinoma (LUAD) is beneficial for developing new therapeutic strategies and predicting prognosis. This study was performed to select core genes related to LUAD and to analyze their prognostic value. Methods Microarray datasets from the GEO (GSE75037) and TCGA-LUAD datasets were analyzed to identify differentially coexpressed genes in LUAD using weighted gene coexpression network analysis (WGCNA) and differential gene expression analysis. Functional enrichment analysis was conducted, and a protein–protein interaction (PPI) network was established. Subsequently, hub genes were identified using the CytoHubba plug-in. Overall survival (OS) analyses of hub genes were performed. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (THPA) databases were used to validate our findings. Gene set enrichment analysis (GSEA) of survival-related hub genes were conducted. Immunohistochemistry (IHC) was carried out to validate our findings. Results We identified 486 differentially coexpressed genes. Functional enrichment analysis suggested these genes were primarily enriched in the regulation of epithelial cell proliferation, collagen-containing extracellular matrix, transforming growth factor beta binding, and signaling pathways regulating the pluripotency of stem cells. Ten hub genes were detected using the maximal clique centrality (MCC) algorithm, and four genes were closely associated with OS. The CPTAC and THPA databases revealed that CHRDL1 and SPARCL1 were downregulated at the mRNA and protein expression levels in LUAD, whereas SPP1 was upregulated. GSEA demonstrated that DNA-dependent DNA replication and catalytic activity acting on RNA were correlated with CHRDL1 and SPARCL1 expression, respectively. The IHC results suggested that CHRDL1 and SPARCL1 were significantly downregulated in LUAD. Conclusions Our study revealed that survival-related hub genes closely correlated with the initiation and progression of LUAD. Furthermore, CHRDL1 and SPARCL1 are potential therapeutic and prognostic indicators of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01933-9.
Collapse
Affiliation(s)
- Huan Deng
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer Research and Basic Medical (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qingqing Hang
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer Research and Basic Medical (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.,Zhejiang Chinese Medicinal University, Hangzhou, 310022, China
| | - Dijian Shen
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer Research and Basic Medical (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yibi Zhang
- Jiangxi Medical College, Nanchang University, Nanchang, 331800, China
| | - Ming Chen
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China. .,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. .,Institute of Cancer Research and Basic Medical (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
29
|
Ren K, Sun J, Liu L, Yang Y, Li H, Wang Z, Deng J, Hou M, Qiu J, Zhao W. TP53-Activated lncRNA GHRLOS Regulates Cell Proliferation, Invasion, and Apoptosis of Non-Small Cell Lung Cancer by Modulating the miR-346/APC Axis. Front Oncol 2021; 11:676202. [PMID: 33968785 PMCID: PMC8097184 DOI: 10.3389/fonc.2021.676202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main type of lung cancer with high mortality worldwide. To improve NSCLC therapy, the exploration of molecular mechanisms involved in NSCLC progression and identification of their potential therapy targeting is important. Long noncoding RNAs (lncRNAs) have shown important roles in regulating various tumors progression, including NSCLC. We found lncRNA GHRLOS was decreased in NSCLC cell lines and tissues which correlated with poor prognosis of NSCLC patients. However, the role and underlying mechanisms of lncRNA GHRLOS in NSCLC progression remains elusive. The expression of lncRNA GHRLOS was examined in NSCLC cell lines and biopsy specimens of patients with NSCLC by quantitative real time polymerase chain reaction (qRT-PCR). The effects of GHRLOS on proliferation, invasion and apoptosis of NSCLC cells were determined by both in vitro and in vivo experiments. The interaction between GHRLOS and TP53 was determined by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) combined with qRT-PCR analysis. RNA immunoprecipitation (RIP) was conducted to validate the binding between GHRLOS and microRNA-346 (miR-346). Dual-luciferase reporter assays were also carried out to reveal the interaction between miR-346 and the 3’ untranslated region (3’UTR) of adenomatous polyposis coli (APC) mRNA.Our data demonstrated that overexpression of lncRNA GHRLOS suppressed cancer cell proliferation and invasion as well as promoted cell apoptosis by regulating the expression of CDK2, PCNA, E-cadherin, N-cadherin, Bax, and Bcl-2 in NSCLC cells. Moreover, lncRNA GHRLOS was upregulated by the binding of TP53 to the GHRLOS promoter. The binding target of lncRNA GHRLOS was identified to be miR-346. Impressively, overexpression of miR-346 promoted cell proliferation and invasion, as well as inhibited cell apoptosis, however, these effects can be blocked by overexpression of lncRNA GHRLOS both in vitro and in vivo. In summary, this study reveals lncRNA GHRLOS, upregulated by TP53, acts as a molecule sponge of miR-346 to cooperatively modulates expression of APC, a miR-346 target, and potentially inhibits NSCLC progression via TP53/lncRNA GHRLOS/miR-346/APC axis, which represents a novel pathway that could be useful in targeted therapy against NSCLC.
Collapse
Affiliation(s)
- Ke Ren
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Jinghui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Lingling Liu
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Yuping Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Honghui Li
- Department of Refractive Surgery, Chengdu Aier Eye Hospital, Chengdu, China
| | - Zhichao Wang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Jingzhu Deng
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Min Hou
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Jia Qiu
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Dong B, Qiu Z, Wu Y. Tackle Epithelial-Mesenchymal Transition With Epigenetic Drugs in Cancer. Front Pharmacol 2020; 11:596239. [PMID: 33343366 PMCID: PMC7746977 DOI: 10.3389/fphar.2020.596239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation process in which epithelial cells lose their epithelial properties to acquire mesenchymal features. EMT is essential for embryogenesis and wound healing but is aberrantly activated in pathological conditions like fibrosis and cancer. Tumor-associated EMT contributes to cancer cell initiation, invasion, metastasis, drug resistance and recurrence. This dynamic and reversible event is governed by EMT-transcription factors (EMT-TFs) with epigenetic complexes. In this review, we discuss recent advances regarding the mechanisms that modulate EMT in the context of epigenetic regulation, with emphasis on epigenetic drugs, such as DNA demethylating reagents, inhibitors of histone modifiers and non-coding RNA medication. Therapeutic contributions that improve epigenetic regulation of EMT will translate the clinical manifestation as treating cancer progression more efficiently.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Zhaoping Qiu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States,*Correspondence: Yadi Wu,
| |
Collapse
|
31
|
Qu QH, Jiang SZ, Li XY. LncRNA TBX5-AS1 Regulates the Tumor Progression Through the PI3K/AKT Pathway in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:7949-7961. [PMID: 32884287 PMCID: PMC7431607 DOI: 10.2147/ott.s255195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) have been reported to play important roles in tumor biology. In this study, we aimed to investigate the effects of T-box transcription factor 5 antisense RNA 1 (TBX5-AS1) on aggressive phenotypes of non-small cell lung cancer (NSCLC) cells and explore its regulatory pathway. Methods The expression of TBX5-AS1 in tissues, plasma, and cells was determined by qRT-PCR. Cell viability, proliferation, migration, invasion, and apoptosis were assessed using MTT, colony formation, wound-healing, Transwell, and flow cytometry assay, respectively. Western blot analysis was performed to measure the expression of apoptosis-related proteins. Besides, transfected cells were exposed to PI3K activator (740Y-P) to verify the regulatory pathway. Results TBX5-AS1 expression was down-regulated in NSCLC tissues, plasma, and cells, and associated with lymph node metastasis and histological grade. Overexpression of TBX5-AS1 inhibited cell viability, colony formation, migration, and invasion, while it promoted apoptosis. Conversely, knockdown of TBX5-AS1 showed the completely opposite results. Additionally, western blot showed that the phosphorylation of PI3K and AKT was stimulated by TBX5-AS1 knockdown and suppressed by TBX5-AS1 overexpression. The addition of 740Y-P in transfected cells reversed the TBX5-AS1-induced inhibition of PI3K and AKT phosphorylation and effects on aggressive phenotypes of NSCLC cells. Conclusion The study confirmed the down-regulation of TBX5-AS1 in patients with NSCLC and its association with the progression. We innovatively proposed a possible model of TBX5-AS1-mediated gene regulation in NSCLC progression that TBX5-AS1 inhibited the aggressive phenotypes of NSCLC cells through inactivating the PI3K/AKT pathway. This finding provided a novel insight into NSCLC pathogenesis.
Collapse
Affiliation(s)
- Qing-Hai Qu
- Department of Blood Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Shui-Zheng Jiang
- Calling Ethos Construction Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Xin-Ying Li
- Department of Conservative Dentistry and Endodontics, Weifang Dental Hospital, Qingzhou, Shandong 262500, People's Republic of China
| |
Collapse
|
32
|
Fang C, Wang L, Gong C, Wu W, Yao C, Zhu S. Long non-coding RNAs: How to regulate the metastasis of non-small-cell lung cancer. J Cell Mol Med 2020; 24:3282-3291. [PMID: 32048814 PMCID: PMC7131947 DOI: 10.1111/jcmm.15054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Non–small‐cell lung cancer (NSCLC) has become the most lethal human cancer because of the high rate of metastasis. Hence, clarifying the molecular mechanism underlying NSCLC metastasis is very important to improve the prognosis of patients with NSCLC. Long non‐coding RNAs (LncRNAs) are a class of RNA molecules longer than 200 nucleotides, which can participate in diverse biological processes. About 18% of human LncRNAs were recently found to be associated with tumours. Many studies indicated that aberrant expression of LncRNAs played key roles in the progression and metastasis of NSCLC. According to the function in tumours, LncRNAs can be divided into two classes: oncogenic LncRNAs and tumour‐suppressor LncRNAs. In this review, we summarized the main molecular mechanism of LncRNAs regulating NSCLC metastasis, including three aspects: (a) LncRNAs interact with miRNAs as ceRNAs; (b) LncRNAs bind with target proteins; and (c) LncRNAs participate in the transduction of different signal pathways. Then, LncRNAs can exert their function to regulate the metastasis of NSCLC through influencing the progression of epithelial‐mesenchymal transition (EMT) and the properties of cancer stem cell (CSC). But, it is necessary to do some further research to demonstrate the LncRNAs particular regulatory mechanism of inhibiting the metastasis of NSCLC and explore new drugs targeting LncRNAs.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyuan Gong
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbin Wu
- Experiment Animal Center, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yao
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiguo Zhu
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|