1
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
2
|
Yu X, Ren Z, Wang Y, Yuan G, Hu J, Song L, Pan C, Feng K, Liu Y, Shao L, Zhang L, Wang J, Zhao J, Bao N, Sun Z. Kaempferol attenuates particle-induced osteogenic impairment by regulating ER stress via the IRE1α-XBP1s pathway. J Biol Chem 2024; 300:107394. [PMID: 38768813 PMCID: PMC11223082 DOI: 10.1016/j.jbc.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are the primary causes of failure following total joint arthroplasty. Wear particle-induced osteogenic impairment is recognized as an important contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress emerging as a pivotal underlying mechanism. Hence, searching for potential therapeutic targets and agents capable of modulating ER stress in osteoblasts is crucial for preventing aseptic loosening. Kaempferol (KAE), a natural flavonol compound, has shown promising osteoprotective effects and anti-ER stress properties in diverse diseases. However, the influence of KAE on ER stress-mediated osteogenic impairment induced by wear particles remains unclear. In this study, we observed that KAE effectively relieved TiAl6V4 particles-induced osteolysis by improving osteogenesis in a mouse calvarial model. Furthermore, we demonstrated that KAE could attenuate ER stress-mediated apoptosis in osteoblasts exposed to TiAl6V4 particles, both in vitro and in vivo. Mechanistically, our results revealed that KAE mitigated ER stress-mediated apoptosis by upregulating the IRE1α-XBP1s pathway while concurrently partially inhibiting the IRE1α-regulated RIDD and JNK activation. Collectively, our findings suggest that KAE is a prospective therapeutic agent for treating wear particle-induced osteolysis and highlight the IRE1α-XBP1s pathway as a potential therapeutic target for preventing aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuxiang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guodong Yuan
- Department of Orthopedics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuqiao Liu
- Medical Information Data Bank, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longgang Shao
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinjuan Wang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zafeiropoulou K, Kalampounias G, Alexis S, Anastasopoulos D, Symeonidis A, Katsoris P. Autophagy and oxidative stress modulation mediate Bortezomib resistance in prostate cancer. PLoS One 2024; 19:e0289904. [PMID: 38412186 PMCID: PMC10898778 DOI: 10.1371/journal.pone.0289904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.
Collapse
Affiliation(s)
- Kalliopi Zafeiropoulou
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Spyridon Alexis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Daniil Anastasopoulos
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Sohn SY, San TT, Kim J, Kim HJ. Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells. Biomol Ther (Seoul) 2024; 32:65-76. [PMID: 38072501 PMCID: PMC10762278 DOI: 10.4062/biomolther.2023.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023] Open
Abstract
Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.
Collapse
Affiliation(s)
- Seung Yeon Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Thin Thin San
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhyung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Lv W, Zheng Y, Jiao J, Fu Y, Xu T, Zhang L, Zhang Z, Ma N. The Role of XBP1 in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1217579. [PMID: 37795354 PMCID: PMC10546391 DOI: 10.3389/fendo.2023.1217579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Bone is a dynamic organ that, once formed, undergoes a constant remodeling process that includes bone resorption and synthesis. Osteoclasts and osteoblasts are primarily responsible for controlling this process. X-box binding protein 1 (XBP1), a transcription factor, affects the metabolism of bones in various ways. In recent years, numerous studies have revealed that XBP1 plays a vital role in bone metabolism, including osteoclast and osteoblast development, as well as in regulating immune cell differentiation that affects the immune microenvironment of bone remodeling. In this review, we highlight the regulatory mechanisms of XBP1 on osteoclasts and osteoblasts, how XBP1 affects the immune microenvironment of bone remodeling by influencing the differentiation of immune cells, and predict the possible future research directions of XBP1 to provide new insights for the treatment of bone-related metabolic diseases.
Collapse
Affiliation(s)
- Wenhao Lv
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Fu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Tingrui Xu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Al-Marsoummi S, Mehus AA, Shrestha S, Rice R, Rossow B, Somji S, Garrett SH, Sens DA. Proteasomes Are Critical for Maintenance of CD133+CD24+ Kidney Progenitor Cells. Int J Mol Sci 2023; 24:13303. [PMID: 37686107 PMCID: PMC10487892 DOI: 10.3390/ijms241713303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Kidney progenitor cells, although rare and dispersed, play a key role in the repair of renal tubules after acute kidney damage. However, understanding these cells has been challenging due to the limited access to primary renal tissues and the absence of immortalized cells to model kidney progenitors. Previously, our laboratory utilized the renal proximal tubular epithelial cell line, RPTEC/TERT1, and the flow cytometry technique to sort and establish a kidney progenitor cell model called Human Renal Tubular Precursor TERT (HRTPT) which expresses CD133 and CD24 and exhibits the characteristics of kidney progenitors, such as self-renewal capacity and multi-potential differentiation. In addition, a separate cell line was established, named Human Renal Epithelial Cell 24 TERT (HREC24T), which lacks CD133 expression and shows no progenitor features. To further characterize HRTPT CD133+CD24+ progenitor cells, we performed proteomic profiling which showed high proteasomal expression in HRTPT kidney progenitor cells. RT-qPCR, Western blot, and flow cytometry analysis showed that HRTPT cells possess higher proteasomal expression and activity compared to HREC24T non-progenitor cells. Importantly, inhibition of the proteasomes with bortezomib reduced the expression of progenitor markers and obliterated the potential for self-renewal and differentiation of HRTPT progenitor cells. In conclusion, proteasomes are critical in preserving progenitor markers expression and self-renewal capacity in HRTPT kidney progenitors.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yu S, Zhao H, Qin X, Li X, Guo J, Li W. Giardia duodenalis-induced G0/G1 intestinal epithelial cell cycle arrest and apoptosis involve activation of endoplasmic reticulum stress in vitro. Front Immunol 2023; 14:1127552. [PMID: 37006313 PMCID: PMC10050679 DOI: 10.3389/fimmu.2023.1127552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Giardia duodenalis is a zoonotic intestinal protozoan parasite that may cause host diarrhea and chronic gastroenteritis, resulting in great economic losses annually and representing a significant public health burden across the world. However, thus far, our knowledge on the pathogenesis of Giardia and the related host cell responses is still extensively limited. The aim of this study is to assess the role of endoplasmic reticulum (ER) stress in regulating G0/G1 cell cycle arrest and apoptosis during in vitro infection of intestinal epithelial cells (IECs) with Giardia. The results showed that the mRNA levels of ER chaperone proteins and ER-associated degradation genes were increased and the expression levels of the main unfolded protein response (UPR)-related proteins (GRP78, p-PERK, ATF4, CHOP, p-IRE1, XBP1s and ATF6) were increased upon Giardia exposure. In addition, cell cycle arrest was determined to be induced by UPR signaling pathways (IRE1, PERK and ATF6) through upregulation of p21 and p27 levels and promotion of E2F1-RB complex formation. Upregulation of p21 and p27 expression was shown to be related to Ufd1-Skp2 signaling. Therefore, the cell cycle arrest was induced by ER stress when infected with Giardia. Furthermore, the apoptosis of the host cell was also assessed after exposure to Giardia. The results indicated that apoptosis would be promoted by UPR signaling (PERK and ATF6), but would be suppressed by the hyperphosphorylation of AKT and hypophosphorylation of JNK that were modulated by IRE1 pathway. Taken together, both of the cell cycle arrest and apoptosis of IECs induced by Giardia exposure involved the activation of the UPR signaling. The findings of this study will deepen our understanding of the pathogenesis of Giardia and the associated regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- *Correspondence: Wei Li, ; Jiaying Guo,
| |
Collapse
|
8
|
Piperlongumine and bortezomib synergically inhibit cholangiocarcinoma via ER stress-induced cell death. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:109-120. [PMID: 36227332 DOI: 10.1007/s00210-022-02305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2023]
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy of the cholangiocytes lining the biliary tree. Only 25% of affected patients are eligible for resection due to late-stage diagnosis. Systemic chemotherapy is recommended for those inoperable patients; however, an inadequate response to such treatment remains a significant obstacle. Piperlongumine (PL) is a biologically active alkaloid that selectively kills various cancer cells through the induction of reactive oxygen species (ROS). The role of PL has been shown through its inhibiting the ubiquitin-proteasome system. The mechanism of PL-induced CCA cell death was investigated by inhibiting the UPS and testing the therapeutic potential of combining PL and the proteasome inhibitor bortezomib. A single treatment with PL or BTZ suppressed CCA cell growth. Combined treatment with PL with BTZ produced a synergistic interaction, evidenced by (1) a combination index of < 1 and (2) induction of cell cycle arrest and down-regulation of cell cycle markers. PL induced the accumulation of poly-ubiquitinated proteins in CCA cells but did not affect proteasome activity. PL, in combination with BTZ, amplified the accumulation of poly-ubiquitinated proteins in CCA cells, leading to an endoplasmic reticulum (ER) stress response through the induction of X-box binding protein mRNA splicing. Moreover, PL-combined BTZ promoted the activation of a proapoptotic unfolded protein response via the ATF4-CHOP axis. PL induced CCA cell death via increased accumulation of the poly-ubiquitinated proteins. PL also enhanced the anti-cancer activity of BTZ via ER stress-induced CCA cell death. Thus, the combination of PL and BTZ has potential as an alternative therapeutic option for CCA.
Collapse
|
9
|
Wen J, Zhang W, Shi L, Zhou S, Zhou Y, Zhang M, Luo L, Zhou J. Amiodarone-drove XBP1s aggravates endoplasmic reticulum stress and apoptosis in Hashimoto’s thyroiditis through regulating LINC00842/miR-214/FASL axis. Int Immunopharmacol 2022; 113:109298. [PMID: 36252485 DOI: 10.1016/j.intimp.2022.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
10
|
Enukashvily NI, Semenova N, Chubar AV, Ostromyshenskii DI, Gushcha EA, Gritsaev S, Bessmeltsev SS, Rugal VI, Prikhodko EM, Kostroma I, Zherniakova A, Kotova AV, Belik LA, Shumeev A, Maslennikova II, Ivolgin DI. Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment. Int J Mol Sci 2022; 23:ijms23063359. [PMID: 35328779 PMCID: PMC8951104 DOI: 10.3390/ijms23063359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC ‘education’ by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients’ bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment.
Collapse
Affiliation(s)
- Natella I. Enukashvily
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Correspondence: (N.I.E.); (N.S.)
| | - Natalia Semenova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
- Correspondence: (N.I.E.); (N.S.)
| | - Anna V. Chubar
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Dmitry I. Ostromyshenskii
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Ekaterina A. Gushcha
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Sergei Gritsaev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Stanislav S. Bessmeltsev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Viktor I. Rugal
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Egor M. Prikhodko
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
- Faculty of Clinical Propaedeutics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Ivan Kostroma
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia Zherniakova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia V. Kotova
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Liubov A. Belik
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Alexander Shumeev
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Irina I. Maslennikova
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Dmitry I. Ivolgin
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| |
Collapse
|
11
|
Hayashi S, Sakata S, Kawamura S, Tokutake Y, Yonekura S. XBP1u Is Involved in C2C12 Myoblast Differentiation via Accelerated Proteasomal Degradation of Id3. Front Physiol 2022; 13:796190. [PMID: 35153829 PMCID: PMC8829448 DOI: 10.3389/fphys.2022.796190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle, elongation, and fusion to form multinucleated myotubes. Id3, a member of the Id family, plays a crucial role in cell cycle exit and differentiation. However, in muscle cells after differentiation induction, the detailed mechanisms that diminish Id3 function and cause the cells to withdraw from the cell cycle are unknown. Induction of myoblast differentiation resulted in decreased expression of Id3 and increased expression of XBP1u, and XBP1u accelerated proteasomal degradation of Id3 in C2C12 cells. The expression levels of the cyclin-dependent kinase inhibitors p21, p27, and p57 were not increased after differentiation induction of XBP1-knockdown C2C12 cells. Moreover, knockdown of Id3 rescued myogenic differentiation of XBP1-knockdown C2C12 cells. Taken together, these findings provide evidence that XBP1u regulates cell cycle exit after myogenic differentiation induction through interactions with Id3. To the best of our knowledge, this is the first report of the involvement of XBP1u in myoblast differentiation. These results indicate that XBP1u may act as a “regulator” of myoblast differentiation under various physiological conditions.
Collapse
Affiliation(s)
- Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Sakata
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Kawamura
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yukako Tokutake
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- *Correspondence: Shinichi Yonekura,
| |
Collapse
|
12
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
Zhang D, Fan R, Lei L, Lei L, Wang Y, Lv N, Chen P, Williamson RA, Wang B, Hu J. Cell cycle exit during bortezomib-induced osteogenic differentiation of mesenchymal stem cells was mediated by Xbp1s-upregulated p21 Cip1 and p27 Kip1. J Cell Mol Med 2020; 24:9428-9438. [PMID: 32628811 PMCID: PMC7417721 DOI: 10.1111/jcmm.15605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 01/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a variety of cell types. Bortezomib, the first approved proteasome inhibitor used for the treatment of multiple myeloma (MM), has been shown to induce osteoblast differentiation, making it beneficial for myeloma bone disease. In the present study, we aimed to investigate the effects and underlying mechanisms of bortezomib on the cell cycle during osteogenic differentiation. We confirmed that low doses of bortezomib can induce MSCs towards osteogenic differentiation, but high doses are toxic. In the course of bortezomib-induced osteogenic differentiation, we observed cell cycle exit characterized by G0 /G1 phase cell cycle arrest with a significant reduction in cell proliferation. Additionally, we found that the cell cycle exit was tightly related to the induction of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 . Notably, we further demonstrated that the up-regulation of p21Cip1 and p27Kip1 is transcriptionally dependent on the bortezomib-activated ER stress signalling branch Ire1α/Xbp1s. Taken together, these findings reveal an intracellular pathway that integrates proteasome inhibition, osteogenic differentiation and the cell cycle through activation of the ER stress signalling branch Ire1α/Xbp1s.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rong Fan
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Nan Lv
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ping Chen
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baiyan Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|