1
|
Ricco C, Eldaboush A, Liu ML, Werth VP. Extracellular Vesicles in the Pathogenesis, Clinical Characterization, and Management of Dermatomyositis: A Narrative Review. Int J Mol Sci 2024; 25:1967. [PMID: 38396646 PMCID: PMC10889219 DOI: 10.3390/ijms25041967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer particles secreted from cells that primarily assist in cell-to-cell communication through the content of their cargo, such as proteins and RNA. EVs have been implicated in the pathogenesis of various autoimmune diseases, including dermatomyositis (DM), an inflammatory autoimmune disease characterized by distinct cutaneous manifestations, myopathy, and lung disease. We sought to review the role of EVs in DM and understand how they contribute to the pathogenesis and clinical characterization of the disease. We summarized the research progress on EVs in dermatomyositis based on recent publications. EV cargoes, such as double-stranded DNA, microRNA, and proteins, contribute to DM pathogenesis and mediate the proinflammatory response and cytokine release through signaling pathways such as the stimulator of interferon genes (STING) pathway. These nucleic acids and proteins have been proposed as disease-specific, stable biomarkers to monitor disease activity and responses to therapy. They also correlate with clinical parameters, inflammatory markers, and disease severity scores. Furthermore, some markers show an association with morbidities of DM, such as muscle weakness and interstitial lung disease. The continued study of EVs will help us to further elucidate our understanding of dermatomyositis.
Collapse
Affiliation(s)
- Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria P. Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Asanuma Y, Nozawa K, Matsushita M, Kusaoi M, Abe Y, Yamaji K, Tamura N. Critical role of lectin pathway mediated by MBL-associated serine proteases in complement activation for the pathogenesis in systemic lupus erythematosus. Heliyon 2023; 9:e19072. [PMID: 37636359 PMCID: PMC10457435 DOI: 10.1016/j.heliyon.2023.e19072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
In complement activation system, although the classical pathway has shown to play a critical role for the pathogenesis of SLE, the role of lectin pathway has remained unknown in the pathogenesis of SLE. As Mannose-binding lectin-associated serine proteases (MASPs) are associated with activation of the lectin pathway, we conducted this study to clarify MASPs associations in the pathogenesis of SLE. We evaluated the serum level of MASPs (MASP-1 and MASP-2) in total 68 SLE patients consisting of 15 patients with biopsy-confirmed membranous lupus nephritis (M-LN), 35 patients with biopsy-confirmed proliferative lupus nephritis (P-LN), and 18 SLE patients without LN (non-LN). Our data showed that the serum levels of MASPs were reduced in both P-LN and non-LN although those of M-LN were not reduced. Our data show that the lectin pathway mediated by MASPs plays a critical role for the pathogenesis of SLE except for M-LN.
Collapse
Affiliation(s)
- Yuko Asanuma
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Nozawa
- Department of Internal Medicine and Rheumatology, Juntendo University Koshigaya Hospital, Saitama, Japan
| | - Masakazu Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Abe
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Meng S, Wang T, Zhao Q, Hu Q, Chen Y, Li H, Liu C, Liu D, Hong X. Proteomics Analysis of Plasma-Derived Exosomes Unveils the Aberrant Complement and Coagulation Cascades in Dermatomyositis/Polymyositis. J Proteome Res 2023; 22:123-137. [PMID: 36507906 PMCID: PMC9830643 DOI: 10.1021/acs.jproteome.2c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dermatomyositis and polymyositis (DM/PM) are systemic autoimmune diseases characterized by proximal muscle weakness. The underlying pathogenetic mechanism of this disease remains under-researched. Here, using proteomics analysis, a great overlap of differentially expressed plasma exosomal proteins involved in the complement and coagulation cascade pathway, including FGA, FGB, FGG, C1QB, C1QC, and VWF, was identified in DM/PM patients versus healthy controls. Correlation analysis showed that the expression levels of complement-associated proteins (C1QB and C1QC) correlated positively with CRP, ESR, and platelet count. ROC curve analysis demonstrated that complement and coagulation cascade-associated proteins could be strong predictors for DM/PM. In addition, we also identified several other proteins that were differentially expressed in DM and PM. The selected candidate proteins were further validated by parallel reaction monitoring (PRM) and enzyme-linked immunosorbent assay (ELISA). Together, our findings indicate that these exosome-derived proteins might participate in microvascular damage in DM/PM through the activation of the complement and coagulation cascade pathway and function as biomarkers for the clinical diagnosis of DM/PM.
Collapse
Affiliation(s)
- Shuhui Meng
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Tingting Wang
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Qianqian Zhao
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Qiu Hu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Yulan Chen
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Heng Li
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,Integrated
Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Cuilian Liu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China
| | - Dongzhou Liu
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,
| | - Xiaoping Hong
- Department
of Rheumatology and Immunology, The Second Clinical Medical College
of Jinan University, The First Affiliated Hospital of Southern University
of Science and Technology, Shenzhen People’s
Hospital, Shenzhen 518020, Guangdong, China,
| |
Collapse
|
4
|
Liu C, Zhou Y, Zhou Y, Tang X, Tang L, Wang J. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Comput Biol Med 2023; 152:106388. [PMID: 36470144 DOI: 10.1016/j.compbiomed.2022.106388] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS. METHODS Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores. RESULTS Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression. CONCLUSION Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
Collapse
Affiliation(s)
- Chunjiang Liu
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yue Zhou
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
| | - Xiaoqi Tang
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
| | - Liming Tang
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China.
| | - Jiajia Wang
- Department of Rheumatology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China.
| |
Collapse
|
5
|
Aghamohammadi A, Rafatpanah H, Maghsoodlu M, Tohidi N, Mollahosseini F, Shahabi M. Mannose Binding Lectin-Associated Serine Protease 2 (MASP2) Gene Polymorphism and susceptibility to Human T-lymphotropic virus type 1 (HTLV-1) Infection in Blood Donors of Mashhad, Iran. Microbiol Immunol 2022; 66:460-464. [PMID: 35924689 DOI: 10.1111/1348-0421.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Mannose binding lectin-associated serine protease 2 (MASP2) is the effector part of mannose binding lectin (MBL) that activates the complement system in an antibody-independent manner. We aimed to investigate the role of genetic polymorphisms in the MASP2 gene and susceptibility to HTLV-1 infection. A total of 172 HTLV-1 infected individuals and 170 healthy blood donors were analyzed in this case-control study. Nine single nucleotide polymorphisms (SNPs) encompassing different regions of the MASP2 gene were genotyped with a PCR-SSP assay. The relation between SNPs genotype and susceptibility to HTLV-1 infection was investigated with a chi-squared test considering p<0.05 as statistically significant. Two out of nine tested SNPs were associated with the risk of HTLV-1 infection. The genotype TT at rs17409276 decreased the risk of HTLV-1 (p=0.005, OR=0.301, 95% CI=0.124-0.728). The genotypes CC and CT at rs2273346 were also associated with a higher risk of HTLV-1 acquisition (p=0.004, OR=2.225, 95% CI=1.277-3.877). These findings highlight the importance of MASP2 genetic polymorphisms in the lectin pathway of complement activation and susceptibility to HTLV-1 infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Akram Aghamohammadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Maghsoodlu
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Nastaran Tohidi
- Department of Infectious Diseases and Tropical Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Majid Shahabi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Genetic predisposition of alopecia areata in jordanians: A case-control study. Heliyon 2022; 8:e09184. [PMID: 35392398 PMCID: PMC8980757 DOI: 10.1016/j.heliyon.2022.e09184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Alopecia areata (AA) is a common non-scarring hair loss disease of defined patterns with varied patches size and body sites. The etiology of AA has a complex basis of autoimmunity, environment, and genetic variations. The latter factor is found to play a crucial role in AA risk. Thus, this study aimed to investigate the potential impact of specific immune-related gene polymorphisms among a cohort of Jordanian patients, which was previously reported in other populations. Blood samples of AA patients and control subjects were collected for genomic DNA (gDNA) extraction. Targeted single nucleotide polymorphisms (SNPs) of MASP2, TLR1, CTLA4, and C11orf30 were genotyped in duplicate using the Sequenom MassARRAY® system (iPLEX GOLD). Genotype and allele analysis reveals statistical differences in TLR1 rs4833095 (allele C, P = 0.044), MASP2 rs2273346 (genotype AA, P = 0.0026), and C11orf30 rs2155219 (genotype GG, P = 0.0069) distribution. These findings present the significant contribution of genetic variations in AA susceptibility in the Jordanian population, which is infrequently studied.
Collapse
|
7
|
He YW, He CS. Association of Growth and Differentiation Factor 15 in Rheumatoid Arthritis. J Inflamm Res 2022; 15:1173-1181. [PMID: 35221707 PMCID: PMC8865901 DOI: 10.2147/jir.s350281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose Rheumatoid arthritis (RA) is an inflammatory rheumatic disease, which has been demonstrated to correlate with mutated genetics. Growth and differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily and is expressed in different organs, tissues and immune cells. To date, limited studies have evaluated plasma levels of GDF-15 in RA patients, and whether GDF-15 gene polymorphisms correlate with RA risk in the Chinese Han population has not been clarified. Patients and Methods This case-control study recruited 910 age- and sex-matched RA patients and healthy controls. Plasma levels of GDF-15 were examined by enzyme linked immunosorbent assay, and polymorphisms (rs1055150, rs1058587, rs3787023, and rs4808793) were genotyped by KASP method. Results RA patients had higher levels of GDF-15 as compared to that in healthy controls. Patients with positive CRP also showed higher levels of GDF-15 when compared to that in patients with negative CRP. Levels of GDF-15 correlated with disease activity score. Frequencies of GG, GC, GG+GC genotypes and G allele in GDF-15 gene rs1058587 were significantly elevated in RA patients compared to controls. Frequencies of CC genotype and C allele in GDF-15 gene rs3787023 were higher in RA patients compared to controls. Other polymorphisms did not correlate with RA susceptibility. Moreover, the four polymorphisms were not correlated with levels of GDF-15. Conclusion Plasma levels of GDF-15 were elevated in RA patients and GDF-15 gene polymorphisms were related to RA risk in the Chinese Han population.
Collapse
Affiliation(s)
- Yan-Wei He
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Cheng-Song He
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Correspondence: Cheng-Song He, Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China, Email
| |
Collapse
|
8
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
9
|
Impact of MASP2 gene polymorphism and gene-tea drinking interaction on susceptibility to tuberculosis. Sci Rep 2021; 11:6544. [PMID: 33753877 PMCID: PMC7985323 DOI: 10.1038/s41598-021-86129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Mannan-binding lectin-associated serine protease-2 (MASP-2) has been reported to play an important role as a key enzyme in the lectin pathway of the complement system. The objectives of our study were to determine whether the single-nucleotide polymorphism (SNPs) of MASP2 and the gene-tea drinking interaction were associated with the susceptibility to TB. In total, 503 patients and 494 healthy controls were contained. Three SNPs (rs12142107, rs12711521, and rs7548659) were genotyped. The association between the SNPs and susceptibility to TB were investigated by conducting multivariate unconditional logistic regression analysis. The gene-tea drinking interactions were analyzed by the additive model of marginal structural linear odds models. Both genotype AC + AA at rs12711521 of MASP2 genes and genotype GT + GG at rs7548659 of MASP2 genes were more prevalent in the TB patient group than the healthy control group (OR: 1.423 and 1.439, respectively, P < 0.05). In addition, The relative excess risk of interaction (RERI) between tea drinking and rs12142107, rs12711521, and rs7548659 of MASP2 genes was found to suggest negative interactions, which reached − 0.2311 (95% confidence interval (CI): − 0.4736, − 0.0113), − 0.7080 (95% CI − 1.3998, − 0.0163), and − 0.5140 (95% CI − 0.8988, − 0.1291), respectively (P < 0.05). Our finding indicated that the SNPs (rs12711521 and rs7548659) of MASP2 were associated with the susceptibility to TB. Furthermore, there were negative interactions between tea drinking and rs12142107, rs12711521, and rs75548659 of MASP2 gene, respectively. Our research provides a basis for studying the pathogenesis and prevention of tuberculosis.
Collapse
|
10
|
Xu WD, Liu XY, Su LC, Huang AF. Association of MASP2 levels and MASP2 gene polymorphisms with systemic lupus erythematosus. J Cell Mol Med 2020; 24:10432-10443. [PMID: 32677764 PMCID: PMC7521335 DOI: 10.1111/jcmm.15656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disorder. MASP2 is a mediator that plays an important role in complement system. As dysregulation of the complement system has been demonstrated to correlate with SLE pathogenesis, the role of MASP2 in lupus has not been widely discussed. In the present study, serum levels of MASP2 were evaluated in 61 lupus patients and 98 healthy controls by training cohort, and then a validation cohort including 100 lupus, 100 rheumatoid arthritis, 100 osteoarthritis, 100 gout, 44 Sjogren's syndrome, 41 ankylosing spondylitis patients confirmed the findings. Receiver operating characteristic (ROC) curve analysis determined the discriminatory capacity for serum MASP2. PCR methods tested the association of MASP2 gene polymorphisms (rs7548659, rs17409276, rs2273346, rs1782455 and rs6695096) and SLE risk. Impact of polymorphism on MASP2 serum levels was evaluated as well. Results showed that serum levels of MASP2 were significantly higher in lupus patients and correlated with some clinical, laboratory characteristics in the training cohort, and were much higher as compared to that in different rheumatic diseases patients in the validation cohort. Serum MASP2 showed a good diagnostic ability for lupus. Genotype frequencies and allele frequency of polymorphisms rs7548659, rs2273346 were strongly related to SLE risk, and genotypes of rs17409276, rs1782455, rs76695096 were significantly correlated with lupus genetic susceptibility. Interestingly, patients carrying GA genotype of rs17409276, TT, TC genotype of rs6695096 showed higher levels of serum MASP2. The findings suggested that MASP2 may be a potential disease marker for lupus, and correlate with SLE pathogenesis.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Hubei Minzu University, Enshi, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|