1
|
Choi SR, Lee J, Seo YJ, Jin HS, Ahn HB, Go Y, Kim NK, Ryu KS, Lee JH. Molecular basis of facilitated target search and sequence discrimination of TALE homeodomain transcription factor Meis1. Nat Commun 2024; 15:6984. [PMID: 39143123 PMCID: PMC11325038 DOI: 10.1038/s41467-024-51297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.
Collapse
Affiliation(s)
- Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Seoul, 02456, Republic of Korea
| | - Juyong Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Arontier Co., Seoul, 06735, Republic of Korea.
| | - Yeo-Jin Seo
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Ho-Seong Jin
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Hye-Bin Ahn
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Seoul, 02456, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| |
Collapse
|
2
|
Li X, Xie M, Yin S, Xiong Z, Mao C, Zhang F, Chen H, Jin L, Lan P, Lian L. Identification and Validation of a Six Immune-Related Genes Signature for Predicting Prognosis in Patients With Stage II Colorectal Cancer. Front Genet 2021; 12:666003. [PMID: 34017356 PMCID: PMC8129521 DOI: 10.3389/fgene.2021.666003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 01/20/2023] Open
Abstract
Background Immune-related genes (IRGs) play important roles in the tumor immune microenvironment and can affect the prognosis of cancer. This study aimed to construct a novel IRG signature for prognostic evaluation of stage II colorectal cancer (CRC). Methods Gene expression profiles and clinical data for stage II CRC patients were collected from the Cancer Genome Atlas and Gene Expression Omnibus database. Univariate, multivariate Cox regression, and least absolute shrinkage and selection operator regression were used to develop the IRG signature, namely IRGCRCII. A nomogram was constructed, and the “Cell Type Identification by Estimating Relative Subsets of RNA Transcripts” (CIBERSORT) method was used to estimate immune cell infiltration. The expression levels of genes and proteins were validated by qRT-PCR and immunohistochemistry in 30 pairs of primary stage II CRC and matched normal tissues. Results A total of 466 patients with stage II CRC were included, and 274 differentially expressed IRGs were identified. Six differentially expressed IRGs were detected and used to construct the IRGCRCII signature, which could significantly stratify patients into high-risk and low-risk groups in terms of disease-free survival in three cohorts: training, test, and external validation (GSE39582). Receiver operating characteristics analysis revealed that the area under the curves of the IRGCRCII signature were significantly greater than those of the OncotypeDX colon signature at 1 (0.759 vs. 0.623), 3 (0.875 vs. 0.629), and 5 years (0.906 vs. 0.698) disease-free survival, respectively. The nomogram performed well in the concordance index (0.779) and calibration curves. The high-risk group had a significantly higher percentage of infiltrated immune cells (e.g., M2 macrophages, plasma cells, resting mast cells) than the low-risk group. Finally, the results of qRT-PCR and immunohistochemistry experiments performed on 30 pairs of clinical specimens were consistent with bioinformatics analysis. Conclusion This study developed and validated a novel immune prognostic signature based on six differentially expressed IRGs for predicting disease-free survival and immune status in patients with stage II CRC, which may reflect immune dysregulation in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi Yin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhizhong Xiong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaobin Mao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fengxiang Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huaxian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Longyang Jin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Qu X, Cheng L, Zhao L, Qiu L, Guo W. Functional variation of SLC52A3 rs13042395 predicts survival of Chinese gastric cancer patients. J Cell Mol Med 2020; 24:12550-12559. [PMID: 32888389 PMCID: PMC7686988 DOI: 10.1111/jcmm.15798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
The solute carrier family 52 member 3 (SLC52A3) gene encodes riboflavin transporter protein which is essential to maintain mitochondrial function in cells. In our research, we found that SLC52A3 rs13042395 C > T variation was significantly associated with poor survival in a 926 Chinese gastric cancer (GCa) patients cohort (CC/CT genotype versus TT genotype, HR = 0.57, 95%CI (0.40-0.82), log-rank P = 0.015). The SLC52A3 rs13042395 C > T change led to its increased mRNA expression according to expression quantitative trait loci analysis (P = 0.0029). In vitro, it was revealed that rs13042395 C allele had higher binding affinity to inhibitory transcription factor Meis homeobox 1 (MEIS1) compared with T allele, knock-down of MEIS1 could up-regulate SLC52A3, and overexpression of SLC52A3 contributed to the increased ability of proliferation, colony formation, migration and invasion in GCa cells. Subsequently, the bioinformatics analysis combined with experiments in vitro suggested that Gap junction protein alpha 1 (GJA1) was the downstream effector of SLC52A3, SLC52A3 may promote the GCa cells aggressiveness by down-regulating the GJA1 expression. Overall, SLC52A3 genetic variant rs13042395 C > T change was associated with poorer survival in Chinese GCa patients and increased SLC52A3 expression by interaction with MEIS1. SLC52A3 promoted the GCa cells aggressiveness by down-regulating the GJA1 expression.
Collapse
Affiliation(s)
- Xiaofei Qu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Lei Cheng
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Liqin Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Lixin Qiu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Weijian Guo
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|