1
|
Xu Y, Liang H, Mao X, Song Z, Shen X, Ge D, Chen Y, Hou B, Hao Z. Puerarin alleviates apoptosis and inflammation in kidney stone cells via the PI3K/AKT pathway: Network pharmacology and experimental verification. J Cell Mol Med 2024; 28:e70180. [PMID: 39462270 PMCID: PMC11512754 DOI: 10.1111/jcmm.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Puerarin(PUE), an isoflavonoid extracted from Pueraria root, has anti-apoptotic effects. The objective of this research is to examine the impact of PUE on renal apoptosis and inflammation resulting from renal calculi and to elucidate its mechanism. The approach of network pharmacology and molecular docking was employed to discover potential targets and pathways of PUE. An animal model of calcium oxalate crystal deposition by intraperitoneal injection of glyoxylate and a model of COM-induced human renal tubular epithelial cells (HK2) were used to investigate the pharmacological mechanisms of PUE against apoptosis and inflammation. We used haematoxylin-eosin (H&E) and Periodic Acid-Schiff staining (PAS) to assess the effect of PUE on crystal deposition and damage. The mechanism of PUE was elucidated and validated using Western blotting, histology and immunohistochemical staining. Network pharmacology findings indicated that the PI3K/AKT pathway plays a crucial role in PUE. We experimentally demonstrate that PUE alleviated COM-induced changes in apoptotic proteins, increased inflammatory indicators and changes in oxidative stress-related indicators in HK2 cells by activating the PI3K/AKT pathway, reduced serum creatinine and urea nitrogen levels in mice caused by CaOx, alleviated crystal deposition and damage, and alleviated apoptosis, oxidative stress and inflammation. Puerarin attenuates renal apoptosis and inflammation caused by kidney stones through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Hu Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xike Mao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zhenyu Song
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xudong Shen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Defeng Ge
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Yang Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Bingbing Hou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zongyao Hao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| |
Collapse
|
2
|
Ji H, Pan Q, Cao R, Li Y, Yang Y, Chen S, Gu Y, Qian D, Guo Y, Wang L, Wang Z, Xiao L. Garcinone C attenuates RANKL-induced osteoclast differentiation and oxidative stress by activating Nrf2/HO-1 and inhibiting the NF-kB signaling pathway. Heliyon 2024; 10:e25601. [PMID: 38333852 PMCID: PMC10850749 DOI: 10.1016/j.heliyon.2024.e25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Hongyun Ji
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Qian Pan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Ruihong Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Daoyi Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| |
Collapse
|
3
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Feng X, Zhu S, Qiao J, Ji Z, Zhou B, Xu W. CX3CL1 promotes M1 macrophage polarization and osteoclast differentiation through NF-κB signaling pathway in ankylosing spondylitis in vitro. J Transl Med 2023; 21:573. [PMID: 37626378 PMCID: PMC10463543 DOI: 10.1186/s12967-023-04449-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an autoimmune disease with a genetic correlation and is characterized by inflammation in the axial skeleton and sacroiliac joints. Many AS patients also have inflammatory bowel diseases (IBD), but the underlying causes of intestinal inflammation and osteoporosis in AS are not well understood. CX3CL1, a protein involved in inflammation, has been found to be up-regulated in AS patients and AS-model mice. METHODS The authors investigated the effects of CX3CL1 on AS by studying its impact on macrophage polarization, inflammation factors, and osteoclast differentiation. Furthermore, the effects of inhibiting the NF-κB pathway and blocking CX3CL1 were assessed using BAY-117082 and anti-CX3CL1 mAb, respectively. AS model mice were used to evaluate the effects of anti-CX3CL1 mAb on limb thickness, spine rupture, and intestinal tissue damage. RESULTS The authors found that CX3CL1 increased the expression of M1-type macrophage markers and inflammation factors, and promoted osteoclast differentiation. This effect was mediated through the NF-κB signaling pathway. Inhibition of the NF-κB pathway prevented M1-type macrophage polarization, reduced inflammation levels, and inhibited osteoclast differentiation. Injection of anti-CX3CL1 mAb alleviated limb thickness, spine rupture, and intestinal tissue damage in AS model mice by inhibiting M1-type macrophage polarization and reducing intestinal tissue inflammation. CONCLUSIONS The study demonstrated that up-regulated CX3CL1 promotes M1-type macrophage polarization and osteoclast differentiation through the NF-κB signaling pathway. Inhibition of this pathway and blocking CX3CL1 can alleviate inflammation and bone destruction in AS. These findings contribute to a better understanding of the pathogenesis of AS and provide a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shanbang Zhu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, No 305 Zhongshandonglu Road, Nanjing, 210002, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhou Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Bole Zhou
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Tian Y, Zhou C, Bu X, Lv Q, Huang Q. Puerarin Attenuates High-Glucose and High-Lipid-Induced Inflammatory Injury in H9c2 Cardiomyocytes via CAV3 Protein Upregulation. J Inflamm Res 2023; 16:2707-2718. [PMID: 37404717 PMCID: PMC10317540 DOI: 10.2147/jir.s408681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023] Open
Abstract
Background Inflammation plays a crucial role in the development of diabetic cardiomyopathy (DCM), including inflammation caused by high-glucose and high-lipid (HGHL). Targeting inflammation may provide a useful strategy for preventing and treating DCM. Puerarin has been shown to reduce the inflammation, apoptosis and hypertrophy of cardiomyocytes induced by HGHL, in which this study aims to investigate the underlying mechanisms. Methods H9c2 cardiomyocytes cultured with HGHL were used to establish a cell model of DCM. Puerarin was then placed to these cells for 24 hours. The effects of HGHL and puerarin on cell viability and apoptosis were investigated by the Cell Proliferation, Toxicity Assay Kit (CCK-8) and flow cytometry. Morphological changes of cardiomyocytes was observed by HE staining. CAV3 proteins in H9c2 cardiomyocytes were altered by transient transfection of CAV3 siRNA. IL-6 was detected by ELISA. The Western blot was performed to determine the CAV3, Bcl-2, Bax, pro-Caspase-3, cleaved-Caspase-3, NF-κB (p65) and p38MAPK proteins. Results Puerarin treatment reversed the cells viability, hypertrophy in morphology, inflammation (showed by p-p38 and p-p65 and IL-6) and apoptosis-related damage (showed by cleaved-Caspase-3/pro-Caspase-3/Bax, Bcl-2 and flow cytometry) of the H9c2 cardiomyocyte caused by HGHL. Puerarin treatment also restored the decrease of CAV3 proteins of the H9c2 cardiomyocyte caused by HGHL. When silenced the expression of CAV3 proteins with SiRNA, puerarin failed to decreased p-p38 and p-p65 and IL-6, and could not reversed cell viability and morphological damage. In contrast to the simple CAV3 silenced group, the CAV3 silenced with NF-κB pathway or p38MAPK pathway inhibitors, significantly downregulated the p-p38, p-p65 and IL-6. Conclusion Puerarin upregulated CAV3 protein expression in H9c2 cardiomyocytes and inhibited the NF-κB and p38MAPK pathways, thereby reducing HGHL-induced inflammation and may related to the apoptosis and hypertrophy of cardiomyocytes.
Collapse
Affiliation(s)
- YiFu Tian
- Department of Physiology of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - CaiXia Zhou
- Department of Physiology of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - XiaoYang Bu
- Department of Physiology of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qian Lv
- Department of Physiology of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qin Huang
- Department of Physiology of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
- Department of Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education & School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
6
|
Li Z, Yu X, Xu M, Zheng K, Hou Z, Miao Z, Sun Y. Aseptic loosening of tumor prostheses in distal femur after revision surgery: a retrospective study. World J Surg Oncol 2023; 21:164. [PMID: 37254167 DOI: 10.1186/s12957-023-03047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Tumor prostheses of the distal femur after revision surgery is associated with high rates of aseptic loosening, which has introduced great challenges to the survival of patients, but only a few studies have evaluated their X-ray imaging. The purpose of this study was to analyze the risk factors for recurrence of aseptic loosening and make recommendations to reduce the incidence of aseptic loosening after revision surgery of tumor prostheses in the distal femur. METHOD A retrospective analysis was performed on 23 patients who had revision surgery for distal femur prostheses due to aseptic loosening between June 2002 and June 2021. They were divided into two groups based on the condition of the prostheses after revision surgery: loosening group (9 patients) and control group (14 patients). Following the initial replacement, the length and diameter of the prosthetic intramedullary stem were measured through the standard full-length anteroposterior X-ray imaging of both lower limbs. The osteotomy length, femoral length and diameter, femoral intramedullary stem diameter, hip-knee-ankle angle (HKAA), mechanical lateral distal femoral angle (mLDFA), mechanical medial proximal tibial angle (mMPTA), and so on were measured as well. Following that, statistical analysis was performed. RESULTS Patients in the loosening group had statistically significant differences in the ratio of prostheses length to femur length (71.89 ± 6.62) and the ratio of intramedullary stem diameter to femoral diameter (25.50 ± 6.90) (P < 0.05), when compared to the control group. The HKAA (175.58 ± 2.78), mLDFA (94.42 ± 2.57), and the deviation angle between the lower limb alignment and the tibial prostheses force line (2.23 ± 1.09) in the loosening group were significantly different from those in the control group (P < 0.05) on postoperative radiographs of the entire length of the lower limbs. The lowest score in intramedullary manubrium I indicated less osteolysis, while the highest score in intramedullary manubrium III indicated the most serious osteolysis, and the difference was statistically significant (P < 0.05). CONCLUSIONS Our study suggests that the use of longer and thicker intramedullary stems can effectively decrease the occurrence of aseptic loosening. Additionally, it is important to avoid using the original prostheses and reconstruct the standard line of lower limb force to further reduce the incidence of aseptic loosening. It is crucial to closely monitor the distal segment of the intramedullary stem for osteolysis after surgery.
Collapse
Affiliation(s)
- Ziming Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiuchun Yu
- Department of Orthopaedics, The 960Th Hospital of the PLA, Jinan, China.
| | - Ming Xu
- Department of Orthopaedics, The 960Th Hospital of the PLA, Jinan, China
| | - Kai Zheng
- Department of Orthopaedics, The 960Th Hospital of the PLA, Jinan, China
| | - Ziwei Hou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zukang Miao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yanshun Sun
- School of Public Health, Weifang Medical College, Weifang, Shandong Province, China
| |
Collapse
|
7
|
Lu Y, Xu X, Yang C, Hosseinkhani S, Zhang C, Luo K, Tang K, Yang K, Lin J. Copper modified cobalt-chromium particles for attenuating wear particle induced-inflammation and osteoclastogenesis. BIOMATERIALS ADVANCES 2023; 147:213315. [PMID: 36746101 DOI: 10.1016/j.bioadv.2023.213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
Abstract
The nature of aseptic prosthetic loosening mainly relates to the wear particles that induce inflammation and subsequent osteoclastogenesis. The ideal approach to impede wear particle-induced osteolysis should minimize inflammation and osteoclastogenesis. In this work, Co29Cr9W3Cu particles were used as a research model for the first time to explore the response of Co29Cr9W3Cu particles to inflammatory response and osteoclast activation in vitro and in vivo by using Co29Cr9W particles as the control group. In vitro studies showed that the Co29Cr9W3Cu particles could promote the generation of M2-phenotype macrophages and increase the expression level of anti-inflammatory factor IL-10, while inhibiting the formation of M1-phenotype macrophages and down-regulating the expression of inflammatory factors TNF-α, IL-6 and IL-1β; More importantly, the Co29Cr9W3Cu particles reduced the expression of NF-κB and downstream osteoclast related-specific transcription marker genes, such as TRAP, NFATc1, and Cath-K; In vivo results indicated that the Co29Cr9W3Cu particles exposed to murine calvarial contributed to decreasing the amount of osteoclast and osteolysis area. These findings collectively demonstrated that Cu-bearing cobalt-chromium alloy may potentially delay the development of aseptic prosthetic loosening induced by wear particles, which is expected to provide evidence of Co29Cr9W3Cu alloy as an alternative material of joint implants with anti-wear associated osteolysis.
Collapse
Affiliation(s)
- Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiongcheng Xu
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | | | - Chenke Zhang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China.
| | - Kai Luo
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China.
| | - Kanglai Tang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
8
|
The Dopamine D1 Receptor Attenuates Titanium Particle-Induced Inhibition of Osteogenesis by Activating the Wnt Signaling Pathway. Mediators Inflamm 2023; 2023:6331650. [PMID: 36700172 PMCID: PMC9870688 DOI: 10.1155/2023/6331650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, has become a major cause of joint replacement failure. Secondary surgery after joint replacement poses a serious threat to public health worldwide. Therefore, determining how to effectively inhibit wear particle-induced PPO has become an urgent issue. Recently, the interaction between osteogenic inhibition and wear particles at the biological interface of the implant has been found to be an important factor in the pathological process. Previous studies have found that the central nervous system plays an important role in the regulation of bone formation and bone remodeling. Dopamine (DA), an important catecholamine neurotransmitter, plays an integral role in the physiological and pathological processes of various tissues through its corresponding receptors. Our current study found that upregulation of dopamine first receptors could be achieved by activating the Wnt/β-catenin pathway, improving osteogenesis in vivo and in vitro, and significantly reducing the inhibition of titanium particle-induced osteogenesis. Overall, these findings suggest that dopamine first receptor (D1R) may be a plausible target to promote osteoblast function and resist wear particle-induced PPO.
Collapse
|
9
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Li Y, Li L, Li X, Luo B, Ye Q, Wang H, Yang L, Zhu X, Han L, Zhang R, Tian H, Wang P. A mechanistic review of chinese medicine polyphenols on bone formation and resorption. Front Pharmacol 2022; 13:1017538. [PMID: 36313339 PMCID: PMC9597080 DOI: 10.3389/fphar.2022.1017538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bone reconstruction includes a steady state system of bone formation and bone absorption. This tight coupling requires subtle coordination between osteoblasts and osteoclasts. If this balance is broken, it will lead to bone mass loss, bone density reduction, and bone metabolic diseases, such as osteoporosis. Polyphenols in Chinese herbal medicines are active ingredients in plant extracts with high safety and few side effects, and they can play a role in affecting bone formation and bone resorption. Some of these have estrogen-like effects and can better target bone health in postmenopausal women. The purpose of this review is to provide comprehensive information on the mechanisms underlying the relationship between traditional Chinese medicine polyphenols and bone formation or bone resorption.
Collapse
Affiliation(s)
- Yan Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianyun Ye
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
| | - Li Han
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ronghua Zhang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| |
Collapse
|
11
|
Liu X, Diao L, Zhang Y, Yang X, Zhou J, Mao Y, Shi X, Zhao F, Liu M. Piperlongumine Inhibits Titanium Particles-Induced Osteolysis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. Int J Mol Sci 2022; 23:2868. [PMID: 35270008 PMCID: PMC8911227 DOI: 10.3390/ijms23052868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
Wear particle-induced aseptic loosening is the most common complication of total joint arthroplasty (TJA). Excessive osteoclast formation and bone resorptive activation have been considered to be responsible for extensive bone destruction and prosthesis failure. Therefore, identification of anti-osteoclastogenesis agents is a potential therapy strategy for the treatment of aseptic loosening and other osteoclast-related osteolysis diseases. In the present study, we reported, for the first time, that piperlongumine (PL), a key alkaloid compound from Piper longum fruits, could significantly suppress the formation and activation of osteoclasts. Furthermore, PL effectively decreased the mRNA expressions of osteoclastic marker genes such as tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), and cathepsin K (CTSK). In addition, PL suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced activations of MAPKs (ERK, JNK and p38) and NF-κB, which down-regulated the protein expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Using a titanium (Ti) particle-induced calvarial osteolysis model, we demonstrated that PL could ameliorate Ti particle-induced bone loss in vivo. These data provide strong evidence that PL has the potential to treat osteoclast-related diseases including periprosthetic osteolysis (PPO) and aseptic loosening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.L.); (L.D.); (Y.Z.); (X.Y.); (J.Z.); (Y.M.); (X.S.); (F.Z.)
| |
Collapse
|
12
|
Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway. J Orthop Translat 2022; 33:55-69. [PMID: 35228997 PMCID: PMC8858883 DOI: 10.1016/j.jot.2022.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. Methods In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. Results Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-β3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. Conclusions Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-β3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. Translational potential of this article These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
Collapse
|
13
|
Xiao W, Shen Y, Xu Y. LOX G473A induces the formation of osteoclasts in RAW264.7 cells via IL-6/JAK2/STAT3 signaling. Exp Cell Res 2021; 409:112890. [PMID: 34695437 DOI: 10.1016/j.yexcr.2021.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Formation of osteoclasts is known to be closely associated with osteoporosis progression. LOX is a key enzyme that catalyzes the synthesis of collagen, which is the new mediator in osteoclast formation. However, the effect of LOXG473A on of osteoclast formation needs to be explored. Thereby, we sought to explore the effect of LOXG473A on formation of osteoclasts and its underlying mechanism. To investigate the function of LOXG473A in osteoclast formation, Raw264.7 cells were stably transfected with LOX-WT or LOX-MUT (LOXG473A). Real-time PCR and western blotting were used to detect the relative levels of osteoclast formation related genes and proteins. TRAP staining and immunofluorescence staining were used to test the ability of Raw264.7 cells to form osteoclasts and the ability of cells to form rings, respectively. Bone erosion assay was used to test bone resorptive activity. The data indicated that LOXG473A significantly enhanced the ability of osteoclasts forming, ring-forming and bone resorpting in Raw264.7 cells. Mechanically, LOXG473A upregulated the expressions of NFATC1, ACP5, CTSK, IL-6, and the proportion of p-JAK2/JAK2 and p-STAT3/STAT3, thereby promoting the formation of osteoclasts. In conclusion, we have verified that LOXG473A induces the proliferation of osteoclasts in Raw264.7 cells via IL-6/JAK2/STAT3 signaling, suggesting a novel strategy for studying osteoporosis.
Collapse
Affiliation(s)
- Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yuxia Shen
- Department of Ultrasound, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
14
|
He K, Luo X, Wen M, Wang C, Qin C, Shao J, Gan L, Dong R, Jiang H. Effect of acute ammonia toxicity on inflammation, oxidative stress and apoptosis in head kidney macrophage of Pelteobagrus fulvidraco and the alleviation of curcumin. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109098. [PMID: 34139380 DOI: 10.1016/j.cbpc.2021.109098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Ammonia is one of the most major pollutant and stress factors of aquaculture systems, and has seriously endangered fish health. However, few studies have been performed on mechanisms of the detrimental impact of ammonia stress and mitigation in fish. A study was carried out to investigate the response of genes involved in inflammation, antioxidation, polarization and apoptosis in head kidney macrophages to acute ammonia toxicity, and the alleviation effect of curcumin. The cells were divided into six groups, as follows: The control group composed of untreated macrophages (CON), the experimental groups, consisting of macrophages treated with 0.23 mg L-1 ammonia (AM), 45 μmol L-1 curcumin (CUR), 0.23 mg L-1 ammonia and 5 μmol L-1 curcumin (5A), 0.23 mg L-1 ammonia and 25 μmol L-1 curcumin (25A), 0.23 mg L-1 ammonia and 45 μmol L-1 curcumin (45A). The cells were pretreated with different concentrations of curcumin for 1 h and then incubated with ammonia for 24 h. The results showed that ammonia poisoning could increase ROS levels, up-regulate the expression of antioxidant enzymes (SOD and GPx), inflammatory cytokines (IL-1, IL-6 and TNF-α) and inflammatory mediators (NF-κB p65 and COX-2), decrease cell viability, down-regulate the expression of M2 marker (Arg-1) and anti-apoptosis (Bcl-2), but curcumin could alleviate the adverse effect of ammonia toxicity. Overall, these results have important implications for understanding of the mechanism of ammonia toxicity and the mitigating effect of curcumin in fish.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Xueping Luo
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory for Animal Diseases and Veterinary Public Health of Guizhou Province, Guiyang 550025, China.
| | - Changan Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of theYangtze River, Neijiang Normal University, Neijiang 641100, China.
| | - Jian Shao
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Lei Gan
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Ranran Dong
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory for Animal Diseases and Veterinary Public Health of Guizhou Province, Guiyang 550025, China.
| |
Collapse
|
15
|
Tang W, Xiao L, Ge G, Zhong M, Zhu J, Qin J, Feng C, Zhang W, Bai J, Zhu X, Wei M, Geng D, Wang Z. Puerarin inhibits titanium particle-induced osteolysis and RANKL-induced osteoclastogenesis via suppression of the NF-κB signaling pathway. J Cell Mol Med 2020; 24:11972-11983. [PMID: 32896108 PMCID: PMC7578865 DOI: 10.1111/jcmm.15821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteolysis around the prosthesis and subsequent aseptic loosening are the main causes of prosthesis failure. Inflammation due to wear particles and osteoclast activation are the key factors in osteolysis and are also potential targets for the treatment of osteolysis. However, it is not clear whether puerarin can inhibit chronic inflammation and alleviate osteolysis. In this study, we investigated the effect of puerarin on Ti particle-induced inflammatory osteolysis in vivo in rat femoral models and in vitro in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast activation models. Our in vivo results showed that puerarin significantly inhibited Ti particle-induced osteolysis and the expression of matrix metallopeptidase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), tumour necrosis factor (TNF)-α and interleukin (IL)-6. In vitro, puerarin prevented RANKL-induced osteoclast differentiation, bone resorption and F-actin ring formation in a concentration-dependent manner. Furthermore, puerarin decreased the phosphorylation of p65 and prevented p65 moving from the cytoplasm to the nucleus. Puerarin also reduced the expression of osteoclast-specific factors and inhibited the inflammatory response. In conclusion, our study proves that puerarin can block the NF-κB signalling pathway to inhibit osteoclast activation and inflammatory processes, which provides a new direction for the treatment of osteolysis-related diseases.
Collapse
Affiliation(s)
- Wenkai Tang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengdan Zhong
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jie Zhu
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jialin Qin
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chencheng Feng
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Wenhao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minggang Wei
- Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|