1
|
Qian X, Cai J, Zhang Y, Shen S, Wang M, Liu S, Meng X, Zhang J, Ye Z, Qiu S, Zhong X, Gao P. EPDR1 promotes PD-L1 expression and tumor immune evasion by inhibiting TRIM21-dependent ubiquitylation of IkappaB kinase-β. EMBO J 2024; 43:4248-4273. [PMID: 39152265 PMCID: PMC11445549 DOI: 10.1038/s44318-024-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Qian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Cai
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingjie Wang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengzhi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang Meng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Junjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zijian Ye
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sheng G, Tao J, Jin P, Li Y, Jin W, Wang K. The Proteasome-Family-Members-Based Prognostic Model Improves the Risk Classification for Adult Acute Myeloid Leukemia. Biomedicines 2024; 12:2147. [PMID: 39335660 PMCID: PMC11429122 DOI: 10.3390/biomedicines12092147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The accumulation of diverse molecular and cytogenetic variations contributes to the heterogeneity of acute myeloid leukemia (AML), a cluster of hematologic malignancies that necessitates enhanced risk evaluation for prognostic prediction and therapeutic guidance. The ubiquitin-proteasome system plays a crucial role in AML; however, the specific contributions of 49 core proteasome family members (PSMs) in this context remain largely unexplored. Methods: The expression and survival significance of 49 PSMs in AML were evaluated using the data from BeatAML2.0, TCGA, and the GEO database, mainly through the K-M plots, differential genes enrichment analysis, and candidate compounds screening via R language and statistical software. Results: we employed LASSO and Cox regression analyses and developed a model comprising three PSMs (PSMB8, PSMG1, and PSMG4) aimed at predicting OS in adult AML patients, utilizing expression profiles from the BeatAML2.0 training datasets. Patients with higher risk scores were predominantly found in the AML-M2 subtype, exhibited poorer ELN stratification, showed no complete remission following induction therapies, and had a higher mortality status. Consistently, significantly worse OS was observed in high-risk patients across both the training and three validation datasets, underscoring the robust predictive capability of the three-PSMs model for AML outcomes. This model elucidated the distinct genetic abnormalities landscape between high- and low-risk groups and enhanced the ELN risk stratification system. Ultimately, the three-PSMs risk score captured AML-specific gene expression signatures, providing a molecular basis for selecting potential therapeutic agents. Conclusions: In summary, these findings manifested the significant potential of the PSM model for predicting AML survival and informed treatment strategies.
Collapse
Affiliation(s)
- Guangying Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Jingfen Tao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Yilu Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (G.S.); (J.T.); (P.J.); (Y.L.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Jung J, Wu Q. Identification of bone mineral density associated genes with shared genetic architectures across multiple tissues: Functional insights for EPDR1, PKDCC, and SPTBN1. PLoS One 2024; 19:e0300535. [PMID: 38683846 PMCID: PMC11057974 DOI: 10.1371/journal.pone.0300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024] Open
Abstract
Recent studies suggest a shared genetic architecture between muscle and bone, yet the underlying molecular mechanisms remain elusive. This study aims to identify the functionally annotated genes with shared genetic architecture between muscle and bone using the most up-to-date genome-wide association study (GWAS) summary statistics from bone mineral density (BMD) and fracture-related genetic variants. We employed an advanced statistical functional mapping method to investigate shared genetic architecture between muscle and bone, focusing on genes highly expressed in muscle tissue. Our analysis identified three genes, EPDR1, PKDCC, and SPTBN1, which are highly expressed in muscle tissue and previously unlinked to bone metabolism. About 90% and 85% of filtered Single-Nucleotide Polymorphisms were in the intronic and intergenic regions for the threshold at P≤5×10-8 and P≤5×10-100, respectively. EPDR1 was highly expressed in multiple tissues, including muscles, adrenal glands, blood vessels, and the thyroid. SPTBN1 was highly expressed in all 30 tissue types except blood, while PKDCC was highly expressed in all 30 tissue types except the brain, pancreas, and skin. Our study provides a framework for using GWAS findings to highlight functional evidence of crosstalk between multiple tissues based on shared genetic architecture between muscle and bone. Further research should focus on functional validation, multi-omics data integration, gene-environment interactions, and clinical relevance in musculoskeletal disorders.
Collapse
Affiliation(s)
- Jongyun Jung
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Qing Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Zhang Y, Wang ZZ, Han AQ, Yang MY, Zhu LX, Pan FM, Wang Y. TuBG1 promotes hepatocellular carcinoma via ATR/P53-apoptosis and cycling pathways. Hepatobiliary Pancreat Dis Int 2024; 23:195-209. [PMID: 37806848 DOI: 10.1016/j.hbpd.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As reported, γ-tubulin (TuBG1) is related to the occurrence and development of various types of malignant tumors. However, its role in hepatocellular cancer (HCC) is not clear. The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients. METHODS The correlation between TuBG1 and clinical parameters and survival in HCC patients was explored by bioinformatics analysis. Immunohistochemistry was used for the verification. The molecular function of TuBG1 was measured using colony formation, scratch assay, trans-well assay and flow cytometry. Gene set enrichment analysis (GSEA) was used to pick up the enriched pathways, followed by investigating the target pathways using Western blotting. The tumor-immune system interactions and drug bank database (TISIDB) was used to evaluate TuBG1 and immunity. Based on the TuBG1-related immune genes, a prognostic model was constructed and was further validated internally and externally. RESULTS The bioinformatic analysis found high expressed TuBG1 in HCC tissue, which was confirmed using immunohistochemistry and Western blotting. After silencing the TuBG1 in HCC cell lines, more G1 arrested cells were found, cell proliferation and invasion were inhibited, and apoptosis was promoted. Furthermore, the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3 (ATR), phospho-P38 mitogen-activated protein kinase (P-P38MAPK), phospho-P53 (P-P53), B-cell lymphoma-2 associated X protein (Bax), cleaved caspase 3 and P21; decreased the expressions of B-cell lymphoma-2 (Bcl-2), cyclin D1, cyclin E2, cyclin-dependent kinase 2 (CDK2) and CDK4. The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively correlated with the overall survival. The constructed immune prognosis model could effectively evaluate the prognosis. CONCLUSIONS The increased expression of TuBG1 in HCC is associated with poor prognosis, which might be involved in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - An-Qi Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Ya Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li-Xin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
5
|
Zhang Y, Guan Y, Zheng X, Li C. Hypoxia-induced miR-181a-5p up-regulation reduces epirubicin sensitivity in breast cancer cells through inhibiting EPDR1/TRPC1 to activate PI3K/AKT signaling pathway. BMC Cancer 2024; 24:167. [PMID: 38308220 PMCID: PMC10835859 DOI: 10.1186/s12885-024-11906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Breast carcinoma (BC) ranks as a predominant malignancy and constitutes the second principal cause of mortality among women globally. Epirubicin stands as the drug of choice for BC therapeutics. Nevertheless, the emergence of chemoresistance has significantly curtailed its therapeutic efficacy. The resistance mechanisms to Epirubicin remain not entirely elucidated, yet they are conjectured to stem from diminished tumor vascular perfusion and resultant hypoxia consequent to Epirubicin administration. In our investigation, we meticulously scrutinized the Gene Expression Omnibus database for EPDR1, a gene implicated in hypoxia and Epirubicin resistance in BC. Subsequently, we delineated the impact of EPDR1 on cellular proliferation, motility, invasive capabilities, and interstitial-related proteins in BC cells, employing methodologies such as the CCK-8 assay, Transwell assay, and western blot analysis. Our research further unveiled that hypoxia-induced miR-181a-5p orchestrates the regulation of BC cell duplication, migration, invasion, and interstitial-related protein expression via modulation of EPDR1. In addition, we identified TRPC1, a gene associated with EPDR1 expression in BC, and substantiated that EPDR1 influences BC cellular dynamics through TRPC1-mediated modulation of the PI3K/AKT signaling cascade. Our findings underscore the pivotal role of EPDR1 in the development of BC. EPDR1 was found to be expressed at subdued levels in BC tissues, Epirubicin-resistant BC cells, and hypoxic BC cells. The overexpression of EPDR1 curtailed BC cell proliferation, motility, invasiveness, and the expression of interstitial-related proteins. At a mechanistic level, the overexpression of hypoxia-induced miR-181a-5p was observed to inhibit the EPDR1/TRPC1 axis, thereby activating the PI3K/AKT signaling pathway and diminishing the sensitivity to Epirubicin in BC cells. In summation, our study demonstrates that the augmentation of hypoxia-induced miR-181a-5p diminishes Epirubicin sensitivity in BC cells by attenuating EPDR1/TRPC1 expression, thereby invigorating the PI3K/AKT signaling pathway. This exposition offers a theoretical foundation for the application of Epirubicin in BC therapy, marking a significant contribution to the existing body of oncological literature.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China
| | - Yunping Guan
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China.
- Lab 1, Cancer Institute, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China.
| | - Chenyang Li
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Jung J, Wu Q. Shared Genetic Architecture between Muscle and Bone: Identification and Functional Implications of EPDR1, PKDCC, and SPTBN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540743. [PMID: 37292779 PMCID: PMC10245569 DOI: 10.1101/2023.05.14.540743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies suggest a shared genetic architecture between muscle and bone, yet the underlying molecular mechanisms remain elusive. This study aims to identify the functionally annotated genes with shared genetic architecture between muscle and bone using the most up-to-date genome-wide association study (GWAS) summary statistics from bone mineral density (BMD) and fracture-related genetic variants. We employed an advanced statistical functional mapping method to investigate shared genetic architecture between muscle and bone, focusing on genes highly expressed in muscle tissue. Our analysis identified three genes, EPDR1, PKDCC, and SPTBN1, highly expressed in muscle tissue and previously unlinked to bone metabolism. About 90% and 85% of filtered Single-Nucleotide Polymorphisms were located in the intronic and intergenic regions for the threshold at P ≤ 5 × 10 - 8 and P ≤ 5 × 10 - 100 , respectively. EPDR1 was highly expressed in multiple tissues, including muscle, adrenal gland, blood vessels, and thyroid. SPTBN1 was highly expressed in all 30 tissue types except blood, while PKDCC was highly expressed in all 30 tissue types except the brain, pancreas, and skin. Our study provides a framework for using GWAS findings to highlight functional evidence of crosstalk between multiple tissues based on shared genetic architecture between muscle and bone. Further research should focus on functional validation, multi-omics data integration, gene-environment interactions, and clinical relevance in musculoskeletal disorders.
Collapse
Affiliation(s)
- Jongyun Jung
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Ohio, USA
| | - Qing Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Ohio, USA
| |
Collapse
|
7
|
Coassolo L, Dannieskiold-Samsøe NB, Zhao M, Allen H, Svensson KJ. New players of the adipose secretome: Therapeutic opportunities and challenges. Curr Opin Pharmacol 2022; 67:102302. [PMID: 36195010 PMCID: PMC9772291 DOI: 10.1016/j.coph.2022.102302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Adipose tissue is a functional endocrine organ comprised of adipocytes and other cell types that are known to secrete a multiplicity of adipose-derived factors, including lipids and proteins. It is well established that adipose tissue and its secretome can impact systemic energy homeostasis. The endocrine and paracrine effects of adipose-derived factors have been widely studied over the last several decades. Owing to technological advances in genomics and proteomics, several additional adipose-derived protein factors have recently been identified. By learning from previous efforts, the next challenge will be to leverage these discoveries for the prevention or treatment of metabolic disorders. Here, we discuss recently discovered adipose-derived proteins secreted from white or brown adipose tissue and the opportunities and challenges of translating these biological findings into disease therapeutics.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Niels Banhos Dannieskiold-Samsøe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Hobson Allen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
8
|
The human batokine EPDR1 regulates β-cell metabolism and function. Mol Metab 2022; 66:101629. [PMID: 36343918 PMCID: PMC9663883 DOI: 10.1016/j.molmet.2022.101629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Ependymin-Related Protein 1 (EPDR1) was recently identified as a secreted human batokine regulating mitochondrial respiration linked to thermogenesis in brown fat. Despite that EPDR1 is expressed in human pancreatic β-cells and that glucose-stimulated mitochondrial metabolism is critical for stimulus-secretion coupling in β-cells, the role of EPDR1 in β-cell metabolism and function has not been investigated. METHODS EPDR1 mRNA levels in human pancreatic islets from non-diabetic (ND) and type 2 diabetes (T2D) subjects were assessed. Human islets, EndoC-βH1 and INS1 832/13 cells were transfected with scramble (control) and EPDR1 siRNAs (EPDR1-KD) or treated with human EPDR1 protein, and glucose-stimulated insulin secretion (GSIS) assessed by ELISA. Mitochondrial metabolism was investigated by extracellular flux analyzer, confocal microscopy and mass spectrometry-based metabolomics analysis. RESULTS EPDR1 mRNA expression was upregulated in human islets from T2D and obese donors and positively correlated to BMI of donors. In T2D donors, EPDR1 mRNA levels negatively correlated with HbA1c and positively correlated with GSIS. EPDR1 silencing in human islets and β-cell lines reduced GSIS whereas treatment with human EPDR1 protein increased GSIS. Epdr1 silencing in INS1 832/13 cells reduced glucose- and pyruvate- but not K+-stimulated insulin secretion. Metabolomics analysis in Epdr1-KD INS1 832/13 cells suggests diversion of glucose-derived pyruvate to lactate production and decreased malate-aspartate shuttle and the tricarboxylic acid (TCA) cycle activity. The glucose-stimulated rise in mitochondrial respiration and ATP/ADP-ratio was impaired in Epdr1-deficient cells. CONCLUSION These results suggests that to maintain glucose homeostasis in obese people, upregulation of EPDR1 may improve β-cell function via channelling glycolysis-derived pyruvate to the mitochondrial TCA cycle.
Collapse
|
9
|
Yang Y, Xu H, Zhu H, Yuan D, Zhang H, Liu Z, Zhao F, Liang G. EPDR1 levels and tumor budding predict and affect the prognosis of bladder carcinoma. Front Oncol 2022; 12:986006. [PMID: 36276104 PMCID: PMC9585273 DOI: 10.3389/fonc.2022.986006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder carcinoma is a common malignancy of the urinary system. The previous study showed that EPDR1 expression was significantly related to the carcinogenesis and progression of bladder carcinoma Methods We retrospectively reviewed the records of 621 patients who were newly diagnosed with bladder carcinoma between January 2018 and August 2020 at The Affiliated Hospital of Zunyi Medical University. We conducted immunohistochemistry of EPDR1 in tumor tissues. Meanwhile, tumor budding evaluation was also carried out by 2 independent experienced pathologists. Results 80 patients were included in this study with a median age of 66 years (range; 42–88 years). 45% of the patients (36/80) were non-muscle-invasive bladder carcinoma patients, while 55% of muscle-invasive bladder carcinoma(44/80). The follow-up time was from 6 months to 36 months. We found that there were significant differences in expression of EPDR1 in the tumor pT stages(p<0.05), pM stages(p<0.05), and pN stages(p<0.05). Meanwhile, a higher expression of EPDR1 indicated a worse outcome for the patient(p<0.05). A tendency toward a worse status of the patient was accompanied by a high positive rate (p<0.001). Moreover, the IOD of EPDR1 had a positive relationship with TB (p<0.05). Furthermore, we found that EPDR1 and tumor budding could be crucial factors for affecting the prognosis of bladder carcinoma, even better than pTMN(Riskscore=(0.724)* pT_stage +(4.960) *EPDR1+(4.312)*TB). Conclusion In conclusion, bladder cancer patients with higher expression levels of EPDR1 had worse survival outcomes. The combination of TB and EPDR1 levels could predict the prognosis for muscle-invasive bladder cancer patients.
Collapse
Affiliation(s)
- Yue Yang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Urology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Medical College of Soochow University, Suzhou, China
| | - Hong Xu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Zhu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Yuan
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hanchao Zhang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Urology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Medical College of Soochow University, Suzhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhengdao Liu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Medical College of Soochow University, Suzhou, China
| | - Faliang Zhao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Medical College of Soochow University, Suzhou, China
| | - Guobiao Liang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Medical College of Soochow University, Suzhou, China
- *Correspondence: Guobiao Liang,
| |
Collapse
|
10
|
Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer 2022; 22:791. [PMID: 35854246 PMCID: PMC9294844 DOI: 10.1186/s12885-022-09872-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of M0 macrophages and their related genes in the prognosis of hepatocellular carcinoma (HCC) remains poorly characterized. METHODS Multidimensional bioinformatic methods were used to construct a risk score model using M0 macrophage-related genes (M0RGs). RESULTS Infiltration of M0 macrophages was significantly higher in HCC tissues than in normal liver tissues (P = 2.299e-07). Further analysis revealed 35 M0RGs that were associated with HCC prognosis; two M0RGs (OLA1 and ATIC) were constructed and validated as a prognostic signature for overall survival of patients with HCC. Survival analysis revealed the positive relationship between the M0RG signature and unfavorable prognosis. Correlation analysis showed that this risk model had positive associations with clinicopathological characteristics, somatic gene mutations, immune cell infiltration, immune checkpoint inhibitor targets, and efficacy of common drugs. CONCLUSIONS The constructed M0RG-based risk model may be promising for the clinical prediction of prognoses and therapeutic responses in patients with HCC.
Collapse
Affiliation(s)
- Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Hu X, Zhou J, Zhang Y, Zeng Y, Jie G, Wang S, Yang A, Zhang M. Identifying potential prognosis markers in hepatocellular carcinoma via integrated bioinformatics analysis and biological experiments. Front Genet 2022; 13:942454. [PMID: 35928445 PMCID: PMC9343963 DOI: 10.3389/fgene.2022.942454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Hepatocellular carcinoma is one kind of clinical common malignant tumor with a poor prognosis, and its pathogenesis remains to be clarified urgently. This study was performed to elucidate key genes involving HCC by bioinformatics analysis and experimental evaluation. Methods: We identified common differentially expressed genes (DEGs) based on gene expression profile data of GSE60502 and GSE84402 from the Gene Expression Omnibus (GEO) database. Gene Ontology enrichment analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, REACTOME pathway enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were used to analyze functions of these genes. The protein-protein interaction (PPI) network was constructed using Cytoscape software based on the STRING database, and Molecular Complex Detection (MCODE) was used to pick out two significant modules. Hub genes, screened by the CytoHubba plug-in, were validated by Gene Expression Profiling Interactive Analysis (GEPIA) and the Human Protein Atlas (HPA) database. Then, the correlation between hub genes expression and immune cell infiltration was evaluated by Tumor IMmune Estimation Resource (TIMER) database, and the prognostic values were analyzed by Kaplan-Meier plotter. Finally, biological experiments were performed to illustrate the functions of RRM2. Results: Through integrated bioinformatics analysis, we found that the upregulated DEGs were related to cell cycle and cell division, while the downregulated DEGs were associated with various metabolic processes and complement cascade. RRM2, MAD2L1, MELK, NCAPG, and ASPM, selected as hub genes, were all correlated with poor overall prognosis in HCC. The novel RRM2 inhibitor osalmid had anti-tumor activity, including inhibiting proliferation and migration, promoting cell apoptosis, blocking cell cycle, and inducing DNA damage of HCC cells. Conclusion: The critical pathways and hub genes in HCC progression were screened out, and targeting RRM2 contributed to developing new therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xueting Hu
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yindi Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guitao Jie
- Department of Hematology, Linyi Central Hospital, Yishui, Shandong, China
| | - Sheng Wang
- Department of Hematology, Linyi Central Hospital, Yishui, Shandong, China
| | - Aixiang Yang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Aixiang Yang, ; Menghui Zhang,
| | - Menghui Zhang
- Department of Hematology, Linyi Central Hospital, Yishui, Shandong, China
- *Correspondence: Aixiang Yang, ; Menghui Zhang,
| |
Collapse
|
12
|
Chen R, Zhao M, An Y, Liu D, Tang Q, Teng G. A Prognostic Gene Signature for Hepatocellular Carcinoma. Front Oncol 2022; 12:841530. [PMID: 35574316 PMCID: PMC9091376 DOI: 10.3389/fonc.2022.841530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is the third most common cause of cancer-related deaths in China and immune-based therapy can improve patient outcomes. In this study, we investigated the relationship between immunity-associated genes and hepatocellular carcinoma from the prognostic perspective. The data downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and the Gene Expression Omnibus (GEO) was screened for gene mutation frequency using the maftools package. Immunity-associated eight-gene signature with strong prognostic ability was constructed and proved as an independent predictor of the patient outcome in LIHC. Seven genes in the immune-related eight-gene signature were strongly associated with the infiltration of M0 macrophages, resting mast cells, and regulatory T cells. Our research may provide clinicians with a quantitative method to predict the prognosis of patients with liver cancer, which can assist in the selection of the optimal treatment plan.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Zhongda Hospital, Nanjing, China
| | - Meng Zhao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanli An
- Medical School of Southeast University, Nanjing, China.,Department of Radiology, Medical School of Southeast University, Nanjing, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, China
| | - Gaojun Teng
- Department of Radiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
13
|
Guo Z, Zhu Z. Comprehensive analysis to identify noncoding RNAs mediated upregulation of maternal embryonic leucine zipper kinase (MELK) correlated with poor prognosis in hepatocellular. Aging (Albany NY) 2022; 14:3973-3988. [PMID: 35511171 PMCID: PMC9134958 DOI: 10.18632/aging.204059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 12/09/2022]
Abstract
Object: Maternal embryonic leucine zipper kinase (MELK) is involved in the development and progression of various cancers. This work investigated the usefulness of MELK in the prediction of hepatocellular carcinoma (HCC) prognosis. Methods: Information on MELK expression was obtained by pan-cancer analysis using The Cancer Genome Atlas (TCGA) database. The TCGA-liver hepatic cancer (TCGA-LIHC), Oncomine datasets, International Cancer Genome Consortium (ICGC) datasets were used to investigate MELK expression in HCC. The prognostic roles of MELK in HCC were assessed by univariate and multivariate survival analyses. The underlying mechanism for noncoding RNAs (ncRNAs) involved in MELK expression was investigated by in silico studies, correlation, methylation, and survival analyses. The relationships between MELK expression and immune cells, immune markers, and checkpoint markers were also analyzed. Results: (1) MELK was identified as an independent predictor of overall survival (OS) in HCC patients (MELK high vs. low expression, HR 2.469; 95% CI 1.217–5.008; p = 0.012) in a multivariate Cox analysis, with a concordance index (C-index) value of 0.727 (95% CI 0.750–0.704). (2) The noncoding RNA miR3142HG and the LINC00265/has-miR-101-3p axis were found to regulate MELK expression in HCC tissue. (3) MELK levels were linked to various immune functions, including tumor infiltration and the expression of immune checkpoints and biomarkers in HCC. Conclusion: MELK may have an oncogenic function in HCC and was found to be up-regulated by ncRNAs and associated with immune cell infiltration and unfavorable prognosis.
Collapse
Affiliation(s)
- ZiYi Guo
- Department of Radiology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, China
| | - Zhitu Zhu
- Department of Clinical Trial, Institute of Clinical Bioinformatics, Cancer Center of Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
14
|
El-Masry OS, Alamri AM, Alzahrani F, Alsamman K. ADAMTS14, ARHGAP22, and EPDR1 as potential novel targets in acute myeloid leukaemia. Heliyon 2022; 8:e09065. [PMID: 35299609 PMCID: PMC8920923 DOI: 10.1016/j.heliyon.2022.e09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a blood cancer with a heterogeneous genomic landscape. This study aimed to mine bioinformatics data generated by RNA sequencing to unveil an AML case transcriptome profile and identify novel therapeutic targets and markers. In this study, we have determined the transcriptomic profile and analysed gene variants of an AML patient at the time of diagnosis and validated some genes by quantitative reverse transcriptase polymerase chain reaction. ADAMTS14, ARHGAP22, and ependymin-related protein 1 (EPDR1) were markedly upregulated compared to the corresponding control. In addition, novel exonic single-nucleotide and insertion/deletion variants were identified in these genes. Hence, ADAMTS14, ARHGAP22, and EPDR1 can be proposed as potential novel targets in AML, and their exact roles should be further explored.
Collapse
Affiliation(s)
- Omar S El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ali M Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahaman Bin Faisal University, Alkhobar, 34445, Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
15
|
Ruan Y, Chen W, Gao C, Xu Y, Shi M, Zhou Z, Zhou G. REXO4 acts as a biomarker and promotes hepatocellular carcinoma progression. J Gastrointest Oncol 2021; 12:3093-3106. [PMID: 35070432 PMCID: PMC8748068 DOI: 10.21037/jgo-21-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of global cancer-related mortality and the most common form of liver cancer. REXO4 (RNA exonuclease 4 homolog) downregulation has previously been linked to enhanced chemosensitivity in breast cancer cells. The present study sought to comprehensively clarify the functional role of REXO4 in HCC. METHODS REXO4 expression levels in HCC tumor tissues and control tissue samples were established by analyzing data from the Gene Expression Omnibus (GEO) database. The expression of REXO4 was then knocked down in HCC cell lines to explore its functional role in these cells, while a gene set enrichment analysis (GSEA) approach was used to assess the functional regulator network associated with REXO4, and the Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to determine the relationship between this gene and immune cell infiltration of tumor tissues. The relationship between REXO4 and metabolic pathway was analyzed by oil red O staining. Cell Counting Kit-8 assays, colony formation, wound-healing assay, and a nude mouse subcutaneous tumor model were used to evaluate the function of REXO4 in HCC. RESULTS REXO4 was highly upregulated in HCC tumors and cell lines, and was an effective predictor of HCC patient prognosis. The results indicated that the knockdown of REXO4 inhibited the proliferation and progression of HCC in vitro and in vivo. GSEA approaches also revealed REXO4 to be associated with tumor progression. Furthermore, REXO4 was associated with the degree of increase of intratumoral immune cell infiltration in HCC tissues and cells, and this gene was also linked with altered lipid metabolism in HCC cells. CONCLUSIONS In summary, these analyses revealed REXO4 to be upregulated in HCC and to be associated with poor patient prognosis. In addition, this gene was closely linked to key cancer hallmark pathways and was revealed to play an important role in the susceptibility of liver tumors to immune cell infiltration and activation. Thus, targeting REXO4 may be a promising approach to treating patients with HCC in the near future.
Collapse
Affiliation(s)
- Yun Ruan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | - Yingying Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Shi
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhuyi Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
16
|
Yang Y, Zhang H, Liu Z, Zhao F, Liang G. EPDR1 is related to stages and metastasize in bladder cancer and can be used as a prognostic biomarker. BMC Urol 2021; 21:71. [PMID: 33902536 PMCID: PMC8077848 DOI: 10.1186/s12894-021-00843-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bladder cancer (BLCA) is a malignant urothelial carcinoma and has a high mortality rate. EPDR1 (ependymin related 1) is a type II transmembrane protein and related to calcium-dependent cell adhesion. Methods We explored the potential oncogenic roles of EPDR1 in BLCA basing on the multiple public datasets. Results We found that EPDR1 expression had a significant difference in BLCA and adjacent normal bladder tissues, and the level of EPDR1was up-regulated with advanced tumor stage and metastasis in BLCA. Meanwhile, the high expression group of EPDR1 had a shorter OS compared to the low or medium expression-group. Furthermore, EPDR1 expression was associated with tumor-infiltrating immune cells (TIICs), including NK cells, CD8 + T cells, CD4 + T cells, Macrophages cells, and so on. Moreover, EPDR1 also involved in several signaling pathways as well as PI3K/AKT pathway, Cytokine receptor interaction, and apoptosis. Conclusion EPDR1 can be used as a novel prognostic biomarker as well as an effective target for diagnosis and treatment in BLCA.
Collapse
Affiliation(s)
- Yue Yang
- Medical College of Soochow University, Suzhou, Jiangsu, China.,Urological Department, The Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China.,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hanchao Zhang
- Medical College of Soochow University, Suzhou, Jiangsu, China.,Urological Department, The Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China.,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengdao Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China.,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Faliang Zhao
- Medical College of Soochow University, Suzhou, Jiangsu, China.,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guobiao Liang
- Medical College of Soochow University, Suzhou, Jiangsu, China. .,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
17
|
Chen R, Zhang Y. EPDR1 correlates with immune cell infiltration in hepatocellular carcinoma and can be used as a prognostic biomarker. J Cell Mol Med 2020; 24:12107-12118. [PMID: 32935479 PMCID: PMC7579695 DOI: 10.1111/jcmm.15852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has high mortality rate and is a serious disease burden globally. EPDR1 (ependymin related 1) is a member of piscine brain glycoproteins and is involved in cell adhesion. The gene expression, prognostic, and clinicopathological related data for EPDR1 were obtained from multiple transcriptome databases. Protein level of EPDR1 in HCC was verified using human protein atlas and CPTAC databases. EPDR1 co‐expressed genes were identified using LinkedOmics. Functional analysis of the co‐expressed genes was performed using gene set enrichment analysis, Gene Ontology, and KEGG. Statistical analysis was conducted in R. The relationship between EPDR1 expression and immune cell infiltration was analyzed using TIMER and CIBERSORT. The expression of EPDR1 was found to be significantly higher in HCC than in normal tissues. Further, EPDR1 level was correlated with advanced stage of HCC. EPDR1 was associated with multiple signaling, as well as cancer and apoptotic pathways. Further, EPDR1 expression was significantly correlated with purity and infiltration levels of various immune cells as well as immune signatures. This is the first study to report the role of EPDR1 in HCC. EPDR1 can be used as a novel prognostic biomarker as well as an effective target for diagnosis and treatment in HCC.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|