1
|
Braile M, Luciano N, Carlomagno D, Salvatore G, Orlandella FM. Insight into the Role of the miR-584 Family in Human Cancers. Int J Mol Sci 2024; 25:7448. [PMID: 39000555 PMCID: PMC11242779 DOI: 10.3390/ijms25137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Among the non-coding RNAs, the aberrant expression of microRNAs (miRNAs) is well described in the oncology field. It is clear that the altered expression of miRNAs is crucial for a variety of processes such as proliferation, apoptosis, motility, angiogenesis and metastasis insurgence. Considering these aspects, RNA-based therapies and the use of miRNAs as non-invasive biomarkers for early diagnosis are underlined as promising opportunities against cancer death. In the era of precision medicine, significant progress in next-generation sequencing (NGS) techniques has broadened knowledge regarding the miRNAs expression profile in cancer tissues and in the blood of cancer patients. In this scenario, pre-clinical and clinical studies suggested that the members of the miR-584 family, i.e., miR-584-5p and -3p, are prominent players in cancer development and progression. Under some conditions, these miRNAs are under-expressed in cancer tissues acting as tumor suppressors, while in other conditions, they are overexpressed, acting as oncogenes increasing the aggressive behavior of cancer cells. The aim of this review is to provide a comprehensive and up-to-date overview on the expression, upstream genes, molecular targets and signaling pathways influenced by the miR-584 family (i.e., miR-584-3p and -5p) in various human solid and hematological cancers. To achieve this goal, 64 articles on this topic are discussed. Among these articles, 55 are focused on miR-584-5p, and it is outlined how this miRNA could be used in future applications as a potential new therapeutic strategy and diagnostic tool.
Collapse
Affiliation(s)
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Davide Carlomagno
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| | - Francesca Maria Orlandella
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
2
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Qi J, Wu G, He M, Xu Y, Yang Z, Ding L, Wang Y, Zhang Z. CDK16 as a potential prognostic biomarker correlated with an immunosuppressive tumor microenvironment and benefits in enhancing the effectiveness of immunotherapy in human cancers. Aging (Albany NY) 2024; 16:1879-1896. [PMID: 38261737 PMCID: PMC10866429 DOI: 10.18632/aging.205465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cyclin-Dependent Kinase 16 (CDK16) plays significant biological roles in various diseases. Nonetheless, its function in different cancer types and its relationship with the Tumor Immune Microenvironment (TIME) are still not well-understood. METHODS We analyzed the expression profile, genetic alterations, clinical features, and prognostic value of CDK16 in pan-cancer using data from The Cancer Genome Atlas, Genotype-Tissue Expression databases, and in vitro experiments. Additionally, the TIMER2 and ImmuCellAI databases were utilized to assess the correlation between CDK16 expression and immune cell infiltration levels. Finally, we examined the correlation between CDK16 and the response to immunotherapy using collected immunotherapy data. RESULTS CDK16 is notably overexpressed in pan-cancer and is a risk factor for poor prognosis in various cancers. Our findings reveal that CDK16 regulates not only cell cycle-related functions to promote cell proliferation but also the autoimmunity-related functions of the innate and adaptive immune systems, along with other immune-related signaling pathways. Moreover, CDK16 overexpression contributes to an immunosuppressive tumor microenvironment, extensively suppressing immune-related features such as the expression of immune-related genes and pathways, as well as the count of immune-infiltrating cells. Our analysis indicated that individuals with low CDK16 expression showed higher response rates to immune checkpoint inhibitors and longer overall survival compared to those with high CDK16 expression. CONCLUSIONS This study establishes CDK16 as a potential biomarker for predicting poor prognosis in a wide range of cancers. Its role in shaping the immunosuppressive tumor microenvironment and influencing the efficacy of immunotherapy highlights the urgent need for developing targeted therapies against CDK16, offering new avenues for cancer treatment and management.
Collapse
Affiliation(s)
- Juntao Qi
- Department of Urology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| | - Gujie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - You Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Zheng Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Liang Ding
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Yan Wang
- Department of Urology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Zhi Zhang
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| |
Collapse
|
4
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
5
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
6
|
Wang X, Liu R, Li S, Xia W, Guo H, Yao W, Liang X, Lu Y, Zhang H. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed Pharmacother 2023; 164:114929. [PMID: 37236028 DOI: 10.1016/j.biopha.2023.114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
8
|
The Elevated Circ_0067835 Could Accelerate Cell Proliferation and Metastasis via miR-1236-3p/Twist2 Axis in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2825172. [PMID: 36262967 PMCID: PMC9576392 DOI: 10.1155/2022/2825172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/16/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant cancer with leading mortality worldwide. Circ_0067835 is a circRNA which plays an important role in various kinds of tumor, while the potential functions of circ_0067835 in HCC remains unclear. In this study, our results of microarray and real-time PCR (RT-PCR) showed that it was obviously elevated in human HCC tumor tissues and HCC cell lines. Inhibition of circ_0067835 restrained cell proliferation and migration in vitro. Furthermore, miR-1236-3p was decreased in tumor samples, and it was indicated to be a target of circ_0067835. Moreover, Twist2 was established to be elevated in HCC tissues, and we identified it as the direct target of miR-1236-3p. Finally, we found that knockdown of miR-1236-3p could reverse the circ_0067835 inhibition effects in HCC cells. In conclusion, our study demonstrated that circ_0067835 contributed to promoting hepatocellular carcinoma cell proliferation and metastasis through downregulating miR-1236-3p expression and then elevating Twist2 expression, which might provide a new vision for HCC patients.
Collapse
|
9
|
Gu X, Shen H, Bai W, Xiang Z, Li X, Zhang R, Shi F, Li H, Zhu G, Guo S. Endometrial cancer prognosis prediction using correlation models based on CDK family genes. Front Genet 2022; 13:1021600. [PMID: 36299580 PMCID: PMC9589062 DOI: 10.3389/fgene.2022.1021600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in cell division. Given that abnormal cell proliferation caused by dysregulation of cell division is one of the major causes of endometrial cancer (EC), it is important to elucidate the role of CDK family genes in the diagnosis and prognosis of EC. In this study, The Cancer Genome Atlas (TCGA) database was used to analyze the frequency of copy number variations and somatic mutations in 26 CDK family genes. Subsequently, the expression of these genes in EC was assessed, and their relationship with overall survival (OS) was examined via Kaplan–Meier analysis to assess their prognostic significance. A prognostic model based on seven CDK genes was constructed using Lasso and Cox regression, and the predictive performance of the model was analyzed using Kaplan–Meier analysis and column line plots. The correlation between CDK genes and immune cells was also examined. Patients with EC in the high-risk group had a poorer prognosis. The results of qRT-PCR and immunohistochemical analyses validated that CDK16 is highly expressed in EC tissues. Patients with EC with high CDK16 expression had worse 10-year OS than patients with low CDK16 expression. These findings suggest that the prognostic model constructed based on CDK genes can help to develop individualized and targeted treatment strategies for patients with EC.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenqi Bai
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng Xiang
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rong Zhang
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fan Shi
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huiyuan Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guangzheng Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Suyang Guo
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Suyang Guo,
| |
Collapse
|
10
|
Zhang L, Zhang P, Liu T, Li D, Liu X. Circ_0006404 enhances hepatocellular carcinoma progression by regulating miR-624. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69980-69987. [PMID: 35579835 DOI: 10.1007/s11356-021-17574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
Growing studies have demonstrated that circRNAs (circular RNAs) act potential roles in tumor metastasis and progression. However, the expression and function of circ_0006404 in hepatocellular carcinoma (HCC) remain to be investigated. The expression of circ_0006404 and miR-624 was detected by qRT-PCR. CCK-8 assay, flow cytometry, and wound healing were performed to determine cell proliferation, cycle, and migration. The target of circ_0006404 was studied by bioinformatics and luciferase activity analysis. Our data indicated that circ_0006404 was overexpressed in HCC specimens and cells and ectopic expression of circ_0006404 increased HCC cell growth, cycle, and migration. Moreover, we showed that miR-624 was downregulated in HCC specimens and cells and miR-624 expression was negatively correlated with circ_0006404 expression in HCC specimens. Circ_0006404 sponged miR-624 in HCC cell, and the overexpression of circ_0006404 suppressed miR-624 expression in HCC cell. Furthermore, circ_0006404 induced HCC cell growth, cycle, and migration via regulating miR-624. These results elucidated that circ_0006404 facilitated HCC progression and might act as one new biomarker for this carcinoma.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Ping Zhang
- Department One of Oncology, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| | - Dongmei Li
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
11
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
12
|
Knockdown of hsa_circ_0001964 inhibits hepatocellular carcinoma cell proliferation by inactivating PI3K/AKT signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wang H, Zhang X, Qiao L, Wang H. CircRNA circ_0000554 promotes ovarian cancer invasion and proliferation by regulating miR-567. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19072-19080. [PMID: 34709546 DOI: 10.1007/s11356-021-13710-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNAs) indicated potential modulating effects in tumor development. However, the specific role of circ_0000554 in ovarian tumor remains unknown. We found that circ_0000554 was overexpressed in ovarian tumor specimens and cells. Forced expression of circ_0000554 promoted cell growth, invasion, and epithelial to mesenchymal transition (EMT). We illustrated that miR-567 was downregulated in ovarian tumor specimens and cells. circ_0000554 was negatively correlated with miR-567 in ovarian tumor specimens. circ_0000554 sponged miR-567 expression in ovarian tumor. RIP assay showed that elevated expression of miR-567 could be enriched with circ_0000554. Luciferase reporter assay indicated that luciferase intensity was inhibited after treated with miR-567 mimic; however, the luciferase value of mut type was not decreased. Elevated expression of circ_0000554 suppressed miR-567 expression in HO8910 cell. circ_0000554 promoted ovarian tumor cell growth, invasion, and EMT via sponging miR-567. It suggested that circ_0000554 represent a potential therapy target for ovarian tumor.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynaecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, 57000, Shandong, China
| | - Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Lujun Qiao
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China
| | - Heng Wang
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China.
| |
Collapse
|
14
|
Zhang C, Lv H, Zhang F, Ji A. LncRNA HCG18 facilitates melanoma progression by modulating miR-324-5p/CDK16 axis. Am J Transl Res 2022; 14:1246-1257. [PMID: 35273726 PMCID: PMC8902582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE LncRNA HCG18 has been reported to act as a tumor promoter in gastric cancer, hepatocellular carcinoma and nasopharyngeal carcinoma. However, the role of HCG18 in melanoma is still not clear. In this study, we detected the expression and molecular function of HCG18 in melanoma. METHODS The expression of HCG18 in melanoma cell lines and 50 pairs of melanoma and corresponding non-cancer tissues was detected by RT-qPCR. The relationship between HCG18 and clinicopathology was analyzed. We used HCG18 overexpressing melanoma cell lines A375 and M14, and si-HCG18 to knock down HCG18 expression. CCK-8, clone formation, Transwell assay and FCM were used to explore the effect of HCG18 knockdown on cell proliferation, migration, invasion and apoptosis in melanoma cells. Bioinformatics software was used to predict the downstream miRNA regulated by HCG18, and the downstream target genes regulated by miR-324-5p. Dual-luciferase reporter assay and RNA pull-down assay were used to verify whether miR-324-5p was related to the predicted sequence of HCG18. RESULTS HCG18 was highly expressed in melanoma tissues and cells. Besides, we found that HCG18 was closely correlated with thickness, TNM stage and metastasis. Functional experiments discovered that HCG18 knockdown restrained cell proliferation, migration and invasion, while promoted cell apoptosis in melanoma cells. HCG18 was confirmed to be a sponge of miR-324-5p, and CDK16 might be a downstream gene of miR-324-5p. HCG18 was found to reverse the effect of miR-324-5p by upregulating CDK16 expression in melanoma cell proliferation, apoptosis, migration and invasion in vitro. CONCLUSION This study indicated that HCG18 played an essential role in the pathogenesis of melanoma and suggested that HCG18 might be a potential target for the treatment and diagnosis of melanoma.
Collapse
Affiliation(s)
- Chengwei Zhang
- Medical Laboratory and Diagnostic Center, Jinan Central HospitalJinan 250013, Shandong, China
| | - Haitao Lv
- Department of Anesthesia Operation, East Hospital, Qingdao Municipal HospitalQingdao 266071, Shandong, China
| | - Fengling Zhang
- Operation Room, Rizhao Hospital of TCMRizhao 276800, Shandong, China
| | - Aihua Ji
- Department of Dermatology, Jinan Children’s HospitalJinan 250022, Shandong, China
| |
Collapse
|
15
|
Pu Z, Lu J, Yang X. Emerging Roles of Circular RNAs in Vascular Smooth Muscle Cell Dysfunction. Front Genet 2022; 12:749296. [PMID: 35126447 PMCID: PMC8807483 DOI: 10.3389/fgene.2021.749296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the major pathophysiological basis of cerebrovascular and cardiovascular diseases. Vascular smooth muscle cells (VSMCs) constitute the main structure of vasculature and play important roles in maintaining vascular tone and blood pressure. Many biological processes and cellular signaling events involved in atherosclerogenesis have been shown to converge on deregulating VSMC functions. However, the molecular mechanisms underlying dysfunctional VSMC in atherosclerosis are still poorly defined. Recent evidence revealed that circular RNAs (circRNAs) are closely related to diseases such as degenerative diseases, tumor, congenital diseases, endocrine diseases and cardiovascular diseases. Several studies demonstrated that circRNAs (e.g., circACTA2, Circ-SATB2, circDiaph3, circ_0020397, circTET3, circCCDC66) played critical roles in the regulation of VSMC proliferation, migration, invasion, and contractile-to-synthetic phenotype transformation by sponging microRNAs (e.g., miR-548f-5p, miR-939, miR-148a-5p, miR-138, miR-351-5p, miR-342-3p). This review describes recent progress in the profiling of circRNAs by transcriptome analysis in VSMCs and their molecular functions in regulating VSMC proliferation and migration.
Collapse
Affiliation(s)
| | - Jingbo Lu
- *Correspondence: Jingbo Lu, ; Xiaohan Yang,
| | | |
Collapse
|
16
|
Zhao J, Nie W, Dong L, Liu W, Wei W. A curcumin analog GL63 inhibits the malignant behaviors of hepatocellular carcinoma by inactivating the JAK2/STAT3 signaling pathway via the circular RNA zinc finger protein 83/microRNA-324-5p/cyclin-dependent kinase 16 axis. J Gastroenterol Hepatol 2021; 36:2967-2977. [PMID: 33982329 PMCID: PMC8518784 DOI: 10.1111/jgh.15545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM (1E,4E)-1,5-bis(2-bromophenyl) penta-1,4-dien-3-one (GL63) is a curcumin analog that can protect against carcinogenesis in hepatocellular carcinoma (HCC). The aim of this study was to explore the molecular mechanism of GL63 in HCC. METHODS Cell viability was examined by cell counting kit-8 (CCK-8) assay. Circular RNA zinc finger protein 83 (circZNF83), microRNA-324-5p (miR-324-5p), and cyclin-dependent kinase 16 (CDK16) levels were measured via the quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using colony formation assay. Flow cytometry was performed for detecting cell cycle and apoptosis. Protein analysis was conducted by western blot. Cell migration and invasion were determined using transwell assay. Target relation was analyzed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The function of GL63 in vivo was researched by xenograft model in mice. RESULTS GL63 inhibited the circZNF83 expression in HCC cells. CircZNF83 overexpression attenuated the inhibitory effects of GL63 on HCC cell growth, cell cycle progression, migration, and invasion but the promoting effect on cell apoptosis. CircZNF83 served as a sponge of miR-324-5p and circZNF83/miR-324-5p axis was involved in the functional regulation of GL63 in HCC progression. Moreover, CDK16 was a downstream target of miR-324-5p and circZNF83 could regulate the CDK16 expression by sponging miR-324-5p. The anti-tumor function of GL63 was also related to the miR-324-5p/CDK16 axis. In addition, GL63 inactivated the JAK2/STAT3 pathway via downregulating circZNF83 to mediate the miR-324-5p/CDK16 axis. GL63 also repressed tumor growth in vivo through the circZNF83/miR-324-5p/CDK16-mediated JAK2/STAT3 signal inhibition. CONCLUSION This study suggested GL63 impeded the HCC development by blocking the JAK2/STAT3 signaling pathway via mediating the circZNF83/miR-324-5p/CDK16 axis.
Collapse
Affiliation(s)
- Ji‐an Zhao
- Department of General Surgery, The First HospitalHebei Medical UniversityShijiazhuangChina
| | - Wenjia Nie
- Department of Medical Service, The First HospitalHebei Medical UniversityShijiazhuangChina
| | - Liang Dong
- Department of Medical Service, The First HospitalHebei Medical UniversityShijiazhuangChina
| | - Wencong Liu
- Department of Ultrasonography, The First HospitalHebei Medical UniversityShijiazhuangChina
| | - Wei Wei
- Department of Burn and Plastic Surgery, The First HospitalHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
17
|
Chen W, Zhang B, Chang X. Emerging roles of circular RNAs in osteoporosis. J Cell Mol Med 2021; 25:9089-9101. [PMID: 34490735 PMCID: PMC8500962 DOI: 10.1111/jcmm.16906] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is one bone disease characterized with skeletal impairment, bone strength reduced and fracture risk enhanced. The regulation processes of bone metabolism are associated with several factors such as mechanical stimulation, epigenetic regulation and hormones. However, the mechanism of osteoporosis remains unsatisfactory. Increasing high‐throughput RNA sequencing and circular RNAs (circRNAs) microarray studies indicated that circRNAs are differentially expressed in osteoporosis. Growing functional studies further pinpointed specific deregulated expressed circRNAs (e.g., circ_28313, circ_0016624, circ_0006393, circ_0076906 and circ_0048211) for their functions involved in bone metabolism, including bone marrow stromal cells (BMSCs) differentiation, proliferation and apoptosis. Moreover, CircRNAs (circ_0002060, Circ_0001275 and Circ_0001445) may be acted as diagnostic biomarkers for osteoporosis. This review discussed recent progresses in the circRNAs expression profiling analyses and their potential functions in regulating BMSCs differentiation, proliferation and apoptosis.
Collapse
Affiliation(s)
- Weichun Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baozhong Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People's Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Bazzi ZA, Tai IT. CDK10 in Gastrointestinal Cancers: Dual Roles as a Tumor Suppressor and Oncogene. Front Oncol 2021; 11:655479. [PMID: 34277407 PMCID: PMC8278820 DOI: 10.3389/fonc.2021.655479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| |
Collapse
|