1
|
Divaris E, Kostopoulos G, Efstathiadou ZA. Current and Emerging Pharmacological Therapies for Cushing's Disease. Curr Pharm Des 2024; 30:757-777. [PMID: 38424426 DOI: 10.2174/0113816128290025240216110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Cushing's Disease (CD), hypercortisolism due to pituitary ACTH secreting neuroendocrine neoplasm, is associated with increased morbidity and, if untreated, mortality in about half of the affected individuals. Consequently, the timely initiation of effective treatment is mandatory. Neurosurgery is the first line and the only potentially curative treatment; however, 30% of patients will have persistent disease post-surgery. Furthermore, a small percentage of those initially controlled will develop hypercortisolism during long-term follow- up. Therefore, patients with persistent or recurrent disease, as well as those considered non-eligible for surgery, will need a second-line therapeutic approach, i.e., pharmacotherapy. Radiation therapy is reserved as a third-line therapeutic option due to its slower onset of action and its unfavorable profile regarding complications. During the past few years, the understanding of molecular mechanisms implicated in the physiology of the hypothalamus-pituitary-adrenal axis has evolved, and new therapeutic targets for CD have emerged. In the present review, currently available treatments, compounds currently tested in ongoing clinical trials, and interesting, potentially new targets emerging from unraveling molecular mechanisms involved in the pathophysiology of Cushing's disease are discussed.
Collapse
Affiliation(s)
- Efstathios Divaris
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kostopoulos
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Zoe A Efstathiadou
- Department of Endocrinology, "Hippokration" General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
3
|
von Selzam V, Theodoropoulou M. Innovative tumour targeting therapeutics in Cushing's disease. Best Pract Res Clin Endocrinol Metab 2022; 36:101701. [PMID: 36511278 DOI: 10.1016/j.beem.2022.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cushing's disease (CD) is the most frequent form of endogenous hypercortisolism. Management of this devastating condition relies on pituitary surgery, while effective pharmacological treatment mainly focus on periphery targeting pharmaceuticals. Approved tumour-targeting drugs are limited to dopamine agonists and somatostatin analogues with frequently low efficacy and substantial side effects. Discoveries on the genetics and pathophysiology of corticotroph tumorigenesis brought forward new potential pharmacological targets. Compounds such as retinoic acid although promising in preclinical studies, are not as efficient in the clinic. Others, such as, silibinin, gefitinib and roscovitine are effective in preclinical models, but their efficacy and safety still needs to be determined in patients with CD.
Collapse
Affiliation(s)
- Vivian von Selzam
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Jurutka PW, di Martino O, Reshi S, Mallick S, Sabir ZL, Staniszewski LJP, Warda A, Maiorella EL, Minasian A, Davidson J, Ibrahim SJ, Raban S, Haddad D, Khamisi M, Suban SL, Dawson BJ, Candia R, Ziller JW, Lee MY, Liu C, Liu W, Marshall PA, Welch JS, Wagner CE. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahyro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(4-isobutoxy-3-isopropylphenyl)amino)nicotinic Acid (NEt-4IB). Int J Mol Sci 2021; 22:ijms222212371. [PMID: 34830251 PMCID: PMC8624485 DOI: 10.3390/ijms222212371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid—or NEt-4IB—in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.
Collapse
Affiliation(s)
- Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Lech J. P. Staniszewski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ankedo Warda
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Emma L. Maiorella
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ani Minasian
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Jesse Davidson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Samir J. Ibrahim
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - San Raban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Dena Haddad
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Madleen Khamisi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Stephanie L. Suban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Bradley J. Dawson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Riley Candia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA 92697, USA;
| | - Ming-Yue Lee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Chang Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Wei Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - John S. Welch
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Correspondence: ; Tel.: +1-602-543-6937
| |
Collapse
|
5
|
Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25:2404-2417. [PMID: 33491272 PMCID: PMC7933964 DOI: 10.1111/jcmm.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/12/2023] Open
Abstract
Drug options for the life‐threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4‐LBD) and induces a conformational change in the secondary structure of TR4‐LBD. Bexarotene suppressed AtT‐20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4‐increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH‐secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajiang Xie
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|