1
|
Ding S, Li W, Xiong X, Si M, Yun C, Wang Y, Huang L, Yan S, Zhen X, Qiao J, Qi X. Bile acids in follicular fluid: potential new therapeutic targets and predictive markers for women with diminished ovarian reserve. J Ovarian Res 2024; 17:250. [PMID: 39702491 DOI: 10.1186/s13048-024-01573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE To investigate the changes in bile acid (BA) metabolites within the follicular fluid (FF) of patients with diminished ovarian reserve (DOR) and to identify novel diagnostic markers that could facilitate early detection and intervention in DOR patients. DESIGN A total of 182 patients undergoing assisted reproductive technology (ART) were enrolled and categorized into the normal ovarian reserve (NOR) group (n = 91) or the DOR group (n = 91) to measure BA levels in FF. To identify the changes in granulosa cells (GCs), we collected GCs from an additional 7 groups of patients for transcriptome sequencing. SETTING Reproductive medicine center within a hospital and university research laboratory. POPULATION A total of 182 patients undergoing assisted reproductive technology were enrolled and categorized into the NOR group (n = 91) or the DOR group (n = 91). METHODS In this study, BA metabolites in FF of DOR and NOR patients were analyzed in detail by targeted metabolomics, and the correlation between BA levels in FF and clinical indicators was discussed. Then, we constructed a diagnostic model for DOR using the random forest algorithm based on five different BAs. Additionally, we performed a functional enrichment analysis on differentially expressed genes (DEGs) in GCs from both DOR and NOR patients. MAIN OUTCOME MEASURES BA levels in FF and their correlation with clinical indicators; the areas under the curve (AUCs) of the random forest diagnostic model for DOR; and the DEGs and corresponding functional enrichment results of GC RNA analysis. RESULT (S) The levels of lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid and cholic acid in FF of DOR group were lower than those of NOR group. And significant reductions in total, primary, secondary, and unconjugated BA levels were observed in the DOR group. The above five BAs levels were closely related to indicators of ovarian reserve. The AUC of the diagnostic model based on the above five BAs was 0.964. Based on transcriptome sequencing data from two groups of GCs, a total of 482 up-regulated and 654 down-regulated DEGs were identified. Gene ontology analysis revealed that the metabolic and biosynthetic processes of fatty acids, steroids, and cholesterol were enriched in these DEGs, whereas Kyoto Encyclopedia of Genes and Genomes analysis indicated enrichment of fatty acid and ovarian steroidogenesis. CONCLUSION(S) The levels of multiple BA metabolites in FF are significantly lower than those in patients with DOR and are closely related to the evaluation of ovarian reserve function.
Collapse
Affiliation(s)
- Shu Ding
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wenyan Li
- Peking University People's Hospital, Beijing, P. R. China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Manfei Si
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuqian Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lixuan Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiumei Zhen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Mogollón García HD, de Andrade Ferrazza R, Ochoa JC, de Athayde FF, Vidigal PMP, Wiltbank M, Kastelic JP, Sartori R, Ferreira JCP. Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. Biol Res 2024; 57:76. [PMID: 39468655 PMCID: PMC11514973 DOI: 10.1186/s40659-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows. RESULTS Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses. CONCLUSIONS The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.
Collapse
Affiliation(s)
- Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
- Department of Genetic, Evolution, Microbiology and Immunology. Biology Institute, Campinas State University, Campinas, São Paulo, Brazil
- Computational Systems Biology Laboratory (CSBL), Institut Pasteur, University of São Paulo (USP), São Paulo, Brazil
| | | | - Julian Camilo Ochoa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
| | - Flávia Florencio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Milo Wiltbank
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, USA
| | | | - Roberto Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
| |
Collapse
|
3
|
Wang J, Huang Z, Cao Z, Luo Y, Liu Y, Cao H, Tang X, Fang G. Loureirin B Reduces Insulin Resistance and Chronic Inflammation in a Rat Model of Polycystic Ovary Syndrome by Upregulating GPR120 and Activating the LKB1/AMPK Signaling Pathway. Int J Mol Sci 2024; 25:11146. [PMID: 39456928 PMCID: PMC11508921 DOI: 10.3390/ijms252011146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Polycystic ovary yndrome (PCOS) is a common metabolic disorder in women, which is usually associated with insulin resistance (IR) and chronic inflammation. Loureirin B (LrB) can effectively improve insulin resistance and alleviate chronic inflammation, and in order to investigate the therapeutic effect of LrB on polycystic ovary syndrome with insulin resistance (PCOS-IR), we conducted animal experiments. A PCOS-IR rat model was established by feeding a high-fat diet combined with letrozole (1 mg/kg·d for 21 days). The rats were treated with the GPR120 agonists TUG-891 and LrB for 4 weeks. Biochemical parameters (fasting blood glucose, total cholesterol, triglycerides, high- and low-density lipoprotein), hormone levels (serum insulin, E2, T, LH, and FSH), and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) were analyzed. Histopathological analyses of ovaries were performed using hematoxylin/eosin (H&E) staining. Real-time PCR and western blotting were used to assess GPR120, NLRP3, and caspase-1 expression in ovaries, and immunohistochemistry was used to evaluate LKB1 and AMPK protein expression. LrB reduced body weight, Lee's index, ovarian index, ovarian area, and volume in PCOS-IR rats. It lowered fasting blood glucose, serum insulin, and HOMA-IR. LrB decreased total serum cholesterol, triglyceride, and LDL levels and increased HDL levels. It reduced serum T, LH, and LH/FSH and raised serum E2 and FSH levels. LrB downregulated the mRNA and protein expression levels of NLRP3 and Caspase-1, increased the protein and mRNA expression levels of GPR120 in rat ovaries, and increased LKB1 and AMPK protein expression in ovaries, ameliorating ovarian histopathological changes in PCOS-IR rats. Taken together, LrB upregulated GPR120, LKB1, and AMPK protein expression, downregulated NLRP3 and Caspase-1 protein expression, reduced insulin resistance and chronic inflammation, and ameliorated histopathological changes in ovarian tissues in PCOS rats, suggesting its potential as a treatment for PCOS.
Collapse
Affiliation(s)
- Jing Wang
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| | - Zheng Huang
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhiyong Cao
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Yehao Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Yueting Liu
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Huilu Cao
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Xiusong Tang
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Gang Fang
- Guangxi Key Laboratory for Applied Fundamental Research of Zhuang Medicine-Key Laboratory Project under Guangxi Health Commission, Guangxi University of Chinese Medicine, Nanning 530001, China (Z.C.); (X.T.)
- Guangxi Higher Education Key Laboratory for the Research of Du-Related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| |
Collapse
|
4
|
Yu J, Wei Y, Zhang Z, Chen J, Fu R, Ye P, Chen S, Yang J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines 2024; 12:1810. [PMID: 39200274 PMCID: PMC11352029 DOI: 10.3390/biomedicines12081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND This study aimed to examine the differential variations in the metabolic composition of follicular fluid (FF) among normal-weight patients with polycystic ovary syndrome (PCOS) and controls and to identify potential biomarkers that may offer insights into the early identification and management of these patients. METHODS We collected FF samples from 45 normal-weight women with PCOS and 36 normal-weight controls without PCOS who were undergoing in vitro fertilization-embryo transfer. An untargeted metabolomic study of collected FF from infertile women was performed using high-performance liquid chromatography-tandem spectrometry (LC-MS). The tendency of the two groups to separate was demonstrated through multivariate analysis. Univariate analysis and variable importance in projection were used to screen out differential metabolites. Metabolic pathway analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a diagnostic model was established using the random forest algorithm. RESULTS The metabolomics analysis revealed an increase in the expression of 23 metabolites and a decrease in that of 10 metabolites in the FF of normal-weight women with PCOS. According to the KEGG pathway analysis, these differential metabolites primarily participated in the metabolism of glycerophospholipids and the biosynthesis of steroid hormones. Based on the biomarker combination of the top 10 metabolites, the area under the curve value was 0.805. The concentrations of prostaglandin E2 in the FF of individuals with PCOS exhibited an inverse association with the proportion of high-quality embryos (p < 0.05). CONCLUSIONS Our research identified a distinct metabolic profile of the FF from normal-weight women with PCOS. The results offer a broader comprehension of the pathogenesis and advancement of PCOS, and the detected differential metabolites could be potential biomarkers and targets for the treatment of PCOS.
Collapse
Affiliation(s)
- Jiayue Yu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| |
Collapse
|
5
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Huang Y, Cheng Y, Zhang M, Xia Y, Chen X, Xian Y, Lin D, Xie S, Guo X. Oxidative stress and inflammatory markers in ovarian follicular fluid of women with diminished ovarian reserve during in vitro fertilization. J Ovarian Res 2023; 16:206. [PMID: 37872635 PMCID: PMC10591385 DOI: 10.1186/s13048-023-01293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Follicular microenvironment has been proposed as an important factor for oocyte grown and maturation. We sought to evaluate the oxidative stress and inflammatory levels in follicular fluid (FF) and association with embryo quality in patients with diminished ovarian reserve (DOR). METHODS The current research included 46 DOR cases and 56 normal ovarian reserve (NOR) cases. Twelve representative oxidative stress markers and eight representative inflammatory factors were measured in the FF. RESULTS Oxidative stress markers total GSH (T-GSH) was decreased in the FF from women with DOR compared with that in NOR group (P = 0.041). More modest differences were observed for reduced GSH (rGSH) and rGSH/GSSG. Women with DOR compared to controls had higher level of TNF-α (P = 0.000) and lower level of IL-18 (P = 0.013). Correlation analysis revealed that GSSG was negatively correlated with normal fertilization rate in NOR group (r = -0.358, P = 0.008), and reduced GSH was negatively correlated with normal fertilization rate in DOR group (r = -0.299, P = 0.049). Moreover, as the regression analysis data showed, the GSSG level was significantly associated with embryo quality indicator. CONCLUSIONS The FF in DOR patients was accompanied by increased oxidative stress and inflammatory levels. Follicular development of women with DOR might be influenced by unusual IL-18 and TNF-α levels in FF. And oxidative stress marker GSSG in NOR group was a negative predictor for embryo quality.
Collapse
Affiliation(s)
- Yan Huang
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yi Cheng
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Min Zhang
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yan Xia
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Xiaoyan Chen
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yexing Xian
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Dewei Lin
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Suyan Xie
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Xinyu Guo
- Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010, China.
| |
Collapse
|
7
|
Xiao H, Yin T, Diao L, Zhang Y, Huang C. Association between immunity and different clinical symptoms in patients with polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13780. [PMID: 37766399 DOI: 10.1111/aji.13780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disease with endocrine and metabolic disorders. The main symptoms are hyperandrogenemia (HA), insulin resistance (IR), and ovulation disorder. However, the pathogenesis and pathophysiological process of these major symptoms in PCOS are still not well defined. In recent studies, the chronic low-grade inflammatory state has become one of the factors affecting PCOS. Some alterable immune factors in PCOS, such as interleukin-15 and interleukin-1, have been identified to be related to androgen synthesis and insulin resistance in PCOS. In addition, a disturbed immune microenvironment in the ovary leads to impaired follicular growth and ovulation. Previous studies have roughly reviewed the relationship between immunity and PCOS. However, the link between the different clinical manifestations of PCOS and immunity has not been well explored and analyzed. The clinical presentation of each patient is diverse, and symptomatic treatment is mainly used. Therefore, this article reviews several representative immunological factors that affect these three symptoms to explore the underlying mechanism, which will be beneficial for developing new treatment strategies.
Collapse
Affiliation(s)
- Huan Xiao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
10
|
Sudhakaran G, Babu SR, Mahendra H, Arockiaraj J. Updated experimental cellular models to study polycystic ovarian syndrome. Life Sci 2023; 322:121672. [PMID: 37028548 DOI: 10.1016/j.lfs.2023.121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS) develops due to hormonal imbalance and hyperandrogenism. Animal models are widely used to study PCOS because they mimic essential characteristics of human PCOS; however, the pathogenesis of PCOS remains unclear. Different sources of novel drugs are currently being screened as therapeutic strategies to alleviate PCOS and its symptoms. Simplified cell line in-vitro models could be preliminarily used to screen the bioactivity of various drugs. This review describes different cell line models focusing on the PCOS condition and its complications. Therefore, the bioactivity of the drugs could be preliminarily screened in a cell line model before moving to higher animal models.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Sarvesh Ramesh Babu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Hridai Mahendra
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Ma J, Wang J, Hu S, Li Y, Zhang Y, Yang Y, Yang C, Huo S, Yang Y, Zhaxi Y, Luo W. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro. Theriogenology 2023; 198:172-182. [PMID: 36592515 DOI: 10.1016/j.theriogenology.2022.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Theca cells (TCs) play a unique role in the structure and function of the ovary. They are not only the structural basis of the follicle but also the androgen-secreting cells in female mammals, which can affect the normal development and atresia of the follicle. The results showed that melatonin receptor (MTR) MT1 and MT2 were expressed on sheep TCs. In the present study, the effects of different concentrations of MT at 0, 10-10, 10-8, 10-6 and 10-4 M/L on sheep TCs with regards to the antioxidant levels, proliferation, apoptosis and steroid hormone secretion were investigated. The results showed that in sheep TCs, all concentrations of MT significantly decreased reactive oxygen species (ROS) concentration and BAX expression; increased Cat, Sod1, and BCL-2 expression. The proliferation viability of TCs was significantly inhibited in all groups except for 10-10 M/L MT, and the expression of cyclin D1 and CDK4 was significantly reduced. MT significantly increased StAR expression and progesterone secretion in TCs, but there was no significant effect on androgen secretion and CYP11A1, CYP17A1 and 3β-HSD expression in all groups. MT-induced progesterone secretion was completely inhibited by Luzindole (a nonspecific MT1 and MT2 inhibitor) and partially inhibited by 4p-PDOT (specific MT2 inhibitor). MT-induced progesterone secretion can be inhibited by LY294002 (PI3K/AKT pathway inhibitor). This study indicated that MT inhibits apoptosis and proliferation of in vitro cultured sheep TCs, which has implications for slowing ovarian atresia and aging. MT activates the PI3K/Akt pathway to mediate the synthesis and secretion of progesterone by TCs. This study provides a basis for further exploration of the role of TCs on follicle development and ovarian steroid hormone secretion.
Collapse
Affiliation(s)
- Junyuan Ma
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Jine Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Songming Hu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yang Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yaxin Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yahua Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Chongfa Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yingpai Zhaxi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Wenxue Luo
- Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, 733200, China
| |
Collapse
|
12
|
Identification and immune features of cuproptosis-related molecular clusters in polycystic ovary syndrome. Sci Rep 2023; 13:980. [PMID: 36653385 PMCID: PMC9849323 DOI: 10.1038/s41598-022-27326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disease, has clinically heterogeneous characteristics. Recently, cuproptosis causes several diseases by killing cells. Hence, we aimed to explore cuproptosis-related molecular clusters in PCOS and construct a prediction model. Based on the GSE5090, GSE43264, GSE98421, and GSE124226 datasets, an analysis of cuproptosis regulators and immune features in PCOS was conducted. In 25 cases of PCOS, the molecular clusters of cuproptosis-related genes and the immune cell infiltration associated with PCOS were investigated. Weighted gene co-expression network analysis was used to identify differentially expressed genes within clusters. Next, we compared the performance of the random forest model, support vector machine model, generalized linear model, and eXtreme Gradient Boosting for deciding the optimum machine model. Validation of the predictive effectiveness was accomplished through nomogram, calibration curve, decision curve analysis, and using other two datasets. PCOS and non-PCOS controls differed in the dysregulation of cuproptosis-related genes and the activation of immunoreaction. Two cuproptosis-related molecular clusters associated with PCOS were identified. Significant heterogeneity was noted in immunity between the two clusters based on the analysis of immune infiltration. The immune-related pathways related to cluster-specific differentially expressed genes in Cluster1 were revealed by functional analysis. With a relatively low residual error and root mean square error and a higher area under the curve (1.000), the support vector machine model demonstrated optimal discriminative performance. An ultimate 5-gene-based support vector machine model was noted to perform satisfactorily in the other two validation datasets (area under the curve = 1.000 for both). Moreover, the nomogram, calibration curve, and decision curve analysis showed that PCOS subtypes can be accurately predicted. Our study results helped demonstrate a comprehensive understanding of the complex relationship between cuproptosis and PCOS and establish a promising prediction model for assessing the risk of cuproptosis in patients with PCOS.
Collapse
|
13
|
Wang M, Wang Y, Yao W, Du X, Li Q. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. J Cell Physiol 2022; 237:4238-4250. [PMID: 36074900 DOI: 10.1002/jcp.30872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
The high level of progesterone and 17β-estradiol ratio (P4/E2) in follicular fluid has been considered as a biomarker of follicular atresia. CYP11A1, the crucial gene encoding the rate-limiting enzyme for steroid hormone synthesis, has been reported differently expressed in the ovary during follicular atresia. However, the regulation mechanism of CYP11A1 expression during follicular atresia still remains unclear. Here, we have demonstrated that lnc2300, a novel pig ovary-specific highly expressed cis-acting long noncoding RNA (lncRNA) transcribed from chromosome 7, has the ability to induce the expression of CYP11A1 and inhibit the apoptosis of porcine granulosa cells (GCs). Mechanistically, lnc2300, mainly located in the cytoplasm of porcine GCs, sponges and suppresses the expression of miR-365-3p through acting as a competing endogenous RNA (ceRNA), which further relieves the inhibitory effects of miR-365-3p on the expression of CYP11A1. Besides, CYP11A1 is validated as a direct functional target of miR-365-3p in porcine GCs. Functionally, lnc2300 is an antiapoptotic lncRNA that reduces porcine GC apoptosis by inhibiting the proapoptotic function of miR-365-3p. In summary, our findings reveal a cis-acting regulation mechanism of CYP11A1 through lncRNA, and define a novel signaling pathway, lnc2300/miR-365-3p/CYP11A1 axis, which is involved in the regulation of GC apoptosis and follicular atresia.
Collapse
Affiliation(s)
- Miaomiao Wang
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Wang
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wang Yao
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenome, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
15
|
Park HS, Chugh RM, Pergande MR, Cetin E, Siblini H, Esfandyari S, Cologna SM, Al-Hendy A. Non-Cytokine Protein Profile of the Mesenchymal Stem Cell Secretome That Regulates the Androgen Production Pathway. Int J Mol Sci 2022; 23:ijms23094633. [PMID: 35563028 PMCID: PMC9101816 DOI: 10.3390/ijms23094633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-aged women, and it typically involves elevated androgen levels. Recently, it has been reported that human bone marrow mesenchymal stem cells (hBM-MSCs) can regulate androgen synthesis pathways. However, the details of the mechanism are still unclear. hBM-MSC-derived secreted factors (the secretome) are promising sources of cell-based therapy as they consist of various types of proteins. It is thus important to know which proteins interact with disease-implicated biomolecules. This work aimed to investigate which secretome components contain the key factor that inhibits testosterone synthesis. In this study, we fractionated hBM-MSC-conditioned media into three fractions based on their molecular weights and found that, of the three fractions, one had the ability to inhibit the androgen-producing genes efficiently. We also analyzed the components of this fraction and established a protein profile of the hBM-MSC secretome, which was shown to inhibit androgen synthesis. Our study describes a set of protein components present in the hBM-MSC secretome that can be used therapeutically to treat PCOS by regulating androgen production for the first time.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Melissa R. Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; (M.R.P.); (S.M.C.)
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; (M.R.P.); (S.M.C.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (H.-S.P.); (E.C.); (H.S.)
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (R.M.C.); (S.E.)
- Correspondence:
| |
Collapse
|
16
|
Zhai Y, Pang Y. Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. J Reprod Immunol 2022; 151:103628. [DOI: 10.1016/j.jri.2022.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
|
17
|
Wang Q, Wang LX, Zhang CY, Bai N, Feng C, Zhang ZM, Wang L, Gao ZZ. LncRNA CRNDE promotes cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Mol Cell Biochem 2022; 477:1477-1488. [PMID: 35166986 DOI: 10.1007/s11010-022-04382-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023]
Abstract
Ovarian cancer seriously threatens the health of women. LncRNA CRNDE is known to be upregulated in ovarian cancer. However, the mechanism by which CRNDE regulates the progress of ovarian cancer is largely unknown. MTT assay was applied to measure the cell viability. Colony formation assay was used to measure the cell proliferation. Cell migration was tested by wound healing, and Transwell assay was performed to detect cell invasion. In addition, the expression of miR-423-5p, CRNDE and FSCN1 were detected by RT-qPCR and western blotting, respectively. Meanwhile, dual-luciferase reporter assay and RIP assay were performed to explore the correlation between miR-423-5p and CRNDE (or FSCN1). CRNDE and FSCN1 were upregulated in ovarian cancer cells (SKOV3, CAOV-3, IGROV1, A2780 and C13K), while miR-423-5p was downregulated. Moreover, silencing of FSCN1/CRNDE significantly decreased proliferation, migration and invasion of ovarian cancer cells (SKOV3 and CI3K) via suppressing MMP-2 and MMP-9. In addition, CRNDE could sponge miR-423-5p, and FSCN1 was confirmed to be the direct target of miR-423-5p. Furthermore, CRNDE knockdown-induced inhibition of FSCN1 was notably reversed by miR-423-5p downregulation. Knockdown of CRNDE inhibited cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Thus, CRNDE may serve a new target for ovarian cancer.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pathology, the First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Ling-Xiong Wang
- Institute of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Chun-Yan Zhang
- Birth Defects Prevention and Control Technology Research Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Nan Bai
- The Medicine Clinical Research Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chen Feng
- Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhuo-Mei Zhang
- Department of Obstetrics and Gynecology, the Third Medical Center of PLA General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Liang Wang
- Department of Pathology, the First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhen-Zhen Gao
- Department of Obstetrics and Gynecology, the Third Medical Center of PLA General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
18
|
Mesenchymal Stem Cell-Conditioned Media Regulate Steroidogenesis and Inhibit Androgen Secretion in a PCOS Cell Model via BMP-2. Int J Mol Sci 2021; 22:ijms22179184. [PMID: 34502090 PMCID: PMC8431467 DOI: 10.3390/ijms22179184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women. Previous studies have demonstrated the therapeutic efficacy of human bone marrow mesenchymal stem cells (BM-hMSCs) for PCOS; however, the regulatory mechanism remains unknown. Bone morphogenetic proteins (BMPs) secreted by BM-hMSCs may underlie the therapeutic effect of these cells on PCOS, based on the ability of BMPs to modulate androgen production and alter steroidogenesis pathway enzymes. In this study, we analyze the effect of BMP-2 on androgen production and steroidogenic pathway enzymes in H295R cells as a human PCOS in vitro cell model. In H295R cells, BMP-2 significantly suppressed cell proliferation, androgen production, and expression of androgen-synthesizing genes, as well as inflammatory gene expression. Furthermore, H295R cells treated with the BM-hMSCs secretome in the presence of neutralizing BMP-2 antibody or with BMP-2 gene knockdown showed augmented expression of androgen-producing genes. Taken together, these results indicate that BMP-2 is a key player mediating the favorable effects of the BM-hMSCs secretome in a human PCOS cell model. BMP-2 overexpression could increase the efficacy of BM-hMSC-based therapy, serving as a novel stem cell therapy for patients with intractable PCOS.
Collapse
|
19
|
Li M, Zhu Y, Jaiswal SK, Liu NF. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif Tissue Int 2021; 109:113-120. [PMID: 33660037 DOI: 10.1007/s00223-021-00828-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
Vascular calcification occurs highly prevalent, which commonly predicts adverse cardiovascular events. The pathogenesis of calcification, a complicated and multifactorial process, is incompletely characterized. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the vascular smooth muscle cells (VSMCs) calcification. This review summarizes the role of mitochondrial dysfunction and metabolic reprogramming in vascular calcification, and indicates that metabolic regulation may be a therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Zhu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Sandip Kumar Jaiswal
- Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
20
|
LncRNA TUG1 exhibits pro-fibrosis activity in hypertrophic scar through TAK1/YAP/TAZ pathway via miR-27b-3p. Mol Cell Biochem 2021; 476:3009-3020. [PMID: 33791919 DOI: 10.1007/s11010-021-04142-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
Hypertrophic Scar (HS) is a complicated fibrotic disease. In addition, its pathogenesis is still to be further explored. Long non-coding RNAs (lncRNAs) have been proved to be participated in multiple diseases, including HS. However, the role of lncRNA TUG1 in HS remains unclear. The expression level of RNA and protein in cells were detected by q-PCR and western blot, respectively. MTT assay was performed to test the cell proliferation. Cell migration was detected by transwell assay. Cell apoptosis was measured by flow cytometry. Dual luciferase report assay and RNA pull down were used to verify the relationship between TUG1, miR-27b-3p and TAK1.TUG1 and TAK1 were upregulated in HS, while miR-27b-3p was downregulated. Knockdown of TUG1 significantly suppressed the proliferation and migration and induced the apoptosis of HS fibroblasts (HSF). In addition, silencing of TUG1 notably inhibited the extracellular matrix (ECM) biosynthesis in HSF. Overexpression of miR-27b-3p has the same effect on HS as that of TUG1 knockdown. Meanwhile, TUG1 could sponge miR-27b-3p, and TAK1 was the direct target of miR-27b-3p. Furthermore, knockdown of TUG1 significantly suppressed the fibrosis in HS via miR-27b-3p/TAK1/YAP/TAZ axis mediation. LncRNA TUG1 promotes the fibrosis in HS via sponging miR-27b-3p and then activates TAK1/YAP/TAZ pathway, which may serve as a potential target for treatment of HS.
Collapse
|
21
|
AKR1C1 Contributes to Cervical Cancer Progression via Regulating TWIST1 Expression. Biochem Genet 2020; 59:516-530. [PMID: 33170398 DOI: 10.1007/s10528-020-10014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
Cervical cancer (CC) is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for CC has shown unprecedented advantages. To improve CC patients' prognosis, there are still urgent needs to develop more promising therapeutic targets. Aldo-keto reductase 1 family member C1 (AKR1C1) is a type of aldosterone reductase and plays a regulatory role in a variety of key metabolic pathways. Several studies indicated that AKR1C1 was highly expressed in a series of tumors, and participated in the progression of these tumors. However, the possible effects of AKR1C1 on CC progression remain unclear. Herein, we revealed AKR1C1 was highly expressed in human CC tissues and correlated with the clinical characteristics of patients with CC. AKR1C1 could regulate the proliferation and invasion of cervical cancer cells in vitro. Further experiments showed that AKR1C1 could regulate TWIST1 expression and AKT pathway. In summary, we confirmed the involvement of AKR1C1 in CC progression, and therefore AKR1C1 may have the potential to be a molecular target for CC treatment.
Collapse
|