1
|
Dong L, Zhao Y, Luo J, Li X, Wang S, Li M, Zou P, Kong H, Wang Q, Zhao Y, Qu H. Carbon Dots Derived from Curcumae Radix and Their Heartprotective Effect. Int J Nanomedicine 2024; 19:3315-3332. [PMID: 38617797 PMCID: PMC11012788 DOI: 10.2147/ijn.s444125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.
Collapse
Affiliation(s)
- Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Peng Zou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
3
|
Xu Y, Liu X, Zhang Z. STV-Na attenuates lipopolysaccharide-induced lung injury in mice via the TLR4/NF-kB pathway. Immun Inflamm Dis 2023; 11:e770. [PMID: 36705406 PMCID: PMC9846117 DOI: 10.1002/iid3.770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a potentially fatal disorder that is largely caused by inflammation. Sodium isostevanol (STV-Na) is a terpenoid produced from stevioside, which possesses anti-inflammatory and antioxidative stress characteristics. nevertheless, it is still unclear how STV-Na affects ALI. Therefore, we investigated the possible STV-Na therapeutic impacts on lipopolysaccharide (LPS)-induced (ALI). METHODS We employed hematoxylin-eosin staining to observe the impact of STV-Na on lung histopathological alterations and used kits to detect the oxidative stress status of lung tissues, such as superoxide dismutase, malondialdehyde, and glutathione. The reactive oxygen species and myeloperoxidase expression in the tissues of lung was assessed by immunofluorescence and immunohistochemistry. Additionally, we detected the impact of STV-Na on inflammatory cell infiltration in lung tissue using Wright-Giemsa staining solution and immunohistochemistry, which was found to reduce inflammation in lung tissue by enzyme-linked immunosorbent assay. Finally, using WB, we examined the impact of STV-Na on the TLR4/NF-kB pathway. RESULTS We observed that STV-Na attenuated lung histopathological alterations in LPS-induced lung damage in mice, reduced infiltration of inflammatory cell and oxidative stress in the tissue of lung, and via the TLR4/NF-kB pathway, there is a reduction in the inflammatory responses in mouse lung tissue. CONCLUSIONS These outcomes indicate that the response of inflammatory cells to LPS-induced ALI in mice was attenuated by STV-Na.
Collapse
Affiliation(s)
- Yanhong Xu
- Department of RespiratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoming Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| | - Zhihui Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| |
Collapse
|
4
|
Fu D, Zhou J, Xu S, Tu J, Cai Y, Liu J, Cai Z, Wang D. Smilax glabra Roxb. flavonoids protect against pathological cardiac hypertrophy by inhibiting the Raf/MEK/ERK pathway: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115213. [PMID: 35331878 DOI: 10.1016/j.jep.2022.115213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Smilax glabra Roxb., the dry rhizome of Sarsaparilla, which is also known as Tu fuling (TFL) in China, is a well-known traditional CHINESE medicine that is widely used for detoxication, relieving dampness and as a diuretic. We have previously shown that the extracted TFL flavonoids (designated TFLF) possess anti-cardiac hypertrophy effects in vitro. However, the anti-cardiac hypertrophy effects of TFLF in vivo and the underlying mechanisms remain to be elucidated. AIM OF THE STUDY To reveal the underlying therapeutic mechanism of TFLF on cardiac hypertrophy by using transverse aortic constriction (TAC) model and cellular assays in vitro. MATERIAL & METHODS Cardiac hypertrophy was replicated by TAC surgery in rats or by isoprenaline treatment of rat H9C2 myocardial cells in vitro. Cardiac structure and function were evaluated by echocardiographic and hemodynamic examinations in vivo and histological analysis of tissues ex vivo. Biochemical kits and quantitative PCR were used to analyze markers of cardiac hypertrophy. Expression and phosphorylation of key proteins in the Raf/MEK/ERK pathway were quantified by Western blotting. We further confirmed our findings in H9C2 rat cardiomyocytes treated with isoprenaline and the ERK inhibitor in vitro. RESULTS TFLF attenuated cardiac hypertrophy and fibrosis and improved cardiac dysfunction in TAC rats. TFLF treatment induced a strong reduction in serum NT-proBNP levels. Cardiac hypertrophy marker gene (ANP, BNP and β-MHC) expression and the phosphorylation levels of c-Raf and ERK1/2 were decreased by TFLF treatment. TFLF also protected H9C2 cells from isoprenaline-induced hypertrophy in vitro via a similar molecular mechanism as that observed in the rat heart. Moreover, pretreatment with TRLF and the ERK inhibitor further inhibited the mRNA overexpression of hypertrophic genes in vitro. CONCLUSIONS TFLFs may protect against pathological cardiac hypertrophy via negative regulation of the Raf/MEK/ERK pathway. Thus, TFLFs are implicated as a potential pharmacological agent for treating cardiac hypertrophy in clinical practice.
Collapse
Affiliation(s)
- Danting Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, China.
| | - Jiangfeng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shanchun Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yueqin Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jingyan Liu
- Laboratory Animal Research Center, Westlake University, Hangzhou, 310024, China.
| | - Zhaowei Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dejun Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Isosteviol improves cardiac function and promotes angiogenesis after myocardial infarction in rats. Cell Tissue Res 2021; 387:275-285. [PMID: 34820705 DOI: 10.1007/s00441-021-03559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Isosteviol has been indicated as a cardiomyocyte protector. However, the underlying mechanism remains unclear. Thus, we sought to confirm the protective effect of isosteviol after myocardial infarction in a model of permanent coronary artery occlusion and investigate the potential proangiogenic activity in vitro and in vivo. A 4-week permanent coronary artery occlusion rat model was generated, and the protective effect of isosteviol was evaluated by echocardiographic imaging and hemodynamics assays. The coronary capillary density was tested by immunochemistry and micro-computed tomography (μCT) imaging. The effect of isosteviol on endothelial cells was determined in human umbilical vein endothelial cells (HUVECs) in vitro and Tg (kdrl: EGFP) zebrafish in vivo. We also examined the expression of related transcription factors by real-time polymerase chain reaction (RT-qPCR). Isosteviol increased ejection fraction (EF), fractional shortening (FS), cardiac systolic index (CI), maximum rate of increase of left ventricular pressure (Max dp/dt), and left ventricular systolic pressure (LVSP) by 32%, 40%, 25%, 26%, and 10%, respectively, in permanent coronary artery occlusion rats. Interestingly, it also promoted coronary capillary density by 2.5-fold. In addition, isosteviol promoted the proliferation and branching of HUVECs in vitro. It also rescued intersegmental vessel (ISV) development and improved endothelial cell proliferation by approximately fivefold (4-6) in zebrafish embryos in vivo. Isosteviol also upregulated the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in zebrafish by fourfold and 3.5-fold, respectively. Our findings suggest that isosteviol is a proangiogenic agent and that this activity is related to its protective effects against myocardial ischemia. After using the permanent coronary artery occlusion model, we demonstrated that isosteviol promotes angiogenesis directly and increases capillary density in myocardial ischemia rats. Isosteviol promotes angiogenesis in zebrafish in vivo and increases vascular endothelial cell proliferation in HUVECs and zebrafish. The angiogenesis activity of isosteviol may be correlated with VEGFA and HIF-1α signaling.
Collapse
|