1
|
Yuxuan H, Sixu R, Chenglin L, Xiufen Z, Cuilin Z. Targeting mitochondria quality control for myocardial ischemia-reperfusion injury. Mitochondrion 2025:102046. [PMID: 40419068 DOI: 10.1016/j.mito.2025.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025]
Abstract
Cardiovascular disease (CVD) remains the leading global cause of mortality. Acute myocardial infarction (AMI) refers to acute myocardial ischemia resulting from thrombosis secondary to coronary atherosclerosis, which poses a major threat to human health. Clinically, timely revascularization (reperfusion) represents the basis of clinical treatment for AMI. However, secondary myocardial ischemia-reperfusion injury (MIRI) caused by reperfusion often exacerbates damage, representing a major challenge in clinical practice. Mitochondria represent essential organelles for maintaining cardiac function and cellular bioenergetics in MIRI. In recent years, the role of mitochondrial quality control (MQC) in maintaining cell homeostasis and mediating MIRI has been extensively studied. This review provides a concise overview of MQC mechanisms at the molecular, organelle, and cellular levels and their possible complex regulatory network in MIRI. In addition, potential treatment strategies targeting MQC to mitigate MIRI are summarized, highlighting the gap between current preclinical research and clinical transformation. Overall, this review provides theoretical guidance for further research and clinical translational studies.
Collapse
Affiliation(s)
- He Yuxuan
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Ren Sixu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Liu Chenglin
- China-Japan Union Hospital of Jilin University, Changchun City 130033 Jilin Province, China
| | - Zheng Xiufen
- Department of Surgery, Western University, Ontario, Canada
| | - Zhu Cuilin
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Li Y, Wang X, Li S, Wang L, Ding N, She Y, Li C. Therapeutic Effects of Natural Products in the Treatment of Chronic Diseases: The Role in Regulating KEAP1-NRF2 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:67-96. [PMID: 39880664 DOI: 10.1142/s0192415x25500041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer. Given this evidence, targeting KEAP1-NRF2 represents a highly promising avenue for developing therapeutic strategies for chronic diseases, and thus the development of appropriate therapeutic strategies based on the targeting of the NRF2 pathway has emerged as a significant area of research interest. This paper highlights an overview of current strategies to modulate KEAP1-NRF2, as well as recent advances in the use of natural compounds and traditional Chinese medicine, with a view to providing meaningful guidelines for drug discovery and development targeting KEAP1-NRF2. Additionally, it discusses the challenges associated with harnessing NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Yaling Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Xijia Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Shuyue Li
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Lei Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Ningning Ding
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Yali She
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Changtian Li
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Sun S, Guo H, Chen G, Zhang H, Zhang Z, Wang X, Li D, Li X, Zhao G, Lin F. Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Mol Med Rep 2025; 31:17. [PMID: 39513608 PMCID: PMC11551696 DOI: 10.3892/mmr.2024.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Heart disease (HD) is a general term for various diseases affecting the heart. An increasing body of evidence suggests that the pathogenesis of HD is closely related to mitochondrial dysfunction. Peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α) is a transcriptional coactivator that plays an important role in mitochondrial function by regulating mitochondrial biogenesis, energy metabolism and oxidative stress. The present review shows that PGC‑1α expression and activity in the heart are controlled by multiple signaling pathways, including adenosine monophosphate‑activated protein kinase, sirtuin 1/3 and nuclear factor κB. These can mediate the activation or inhibition of transcription and post‑translational modifications (such as phosphorylation and acetylation) of PGC‑1α. Furthermore, it highlighted the recent progress of PGC‑1α in HD, including heart failure, coronary heart disease, diabetic cardiomyopathy, drug‑induced cardiotoxicity and arrhythmia. Understanding the mechanisms underlying PGC‑1α in response to pathological stimulation may prove to be beneficial in developing new ideas and strategies for preventing and treating HDs. Meanwhile, the present review explored why the opposite results occurred when PGC‑1α was used as a target therapy.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Huige Guo
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Guohui Chen
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Hui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Zhanrui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xiulong Wang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Dongxu Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xuefang Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Guoan Zhao
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Fei Lin
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| |
Collapse
|
4
|
Song Y, Zhao Y, Zhang X, Cheng C, Yan H, Liu D, Zhang D. Construction of AMPK-related circRNA network in mouse myocardial ischemia-reperfusion injury model. BMC Cardiovasc Disord 2024; 24:759. [PMID: 39736524 DOI: 10.1186/s12872-024-04387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI. METHODS The mouse MIRI model was constructed by ligation of the left anterior descending artery. After the model was successfully established, the related indicators of cardiac function were detected, and high-throughput sequencing was performed on the myocardial tissue of the mice. RESULTS MIRI model was successfully constructed, and two AMPK related differentially expressed loops (novel_circ_043550 and novel_circ_035243) were screened out. A circRNA-miRNA-mRNA network consisting of 2 circRNA, 28 microRNA(miRNA) and 229 messengerRNA (mRNA) was constructed. CONCLUSIONS This study reveals the differential expression of several AMPK-related circRNAs in MIRI in mice, and the AMPK-related circRNA regulatory network is constructed, suggesting that AMPK-related circRNA may have potential clinical application prospects as a potential molecular marker and therapeutic target for MIRI.
Collapse
Affiliation(s)
- Yang Song
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yi Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiaodi Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Cheng Cheng
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Haidong Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
5
|
Wang FH, Qaed E, Aldahmash W, Mahyoub MA, Tang Z, Chu P, Tang ZY. Phosphocreatine ameliorates hepatocellular apoptosis mediated by protecting mitochondrial damage in liver ischemia/reperfusion injury through inhibiting TLR4 and Agonizing Akt Pathway. Tissue Cell 2024; 91:102599. [PMID: 39486133 DOI: 10.1016/j.tice.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Hepatic ischemia/reperfusion (HI/R) presents significant challenges in surgical liver transplantation and hepatic ischemic shock, with few effective clinical preventive measures available. This study explores the potential protective effects and underlying mechanisms of phosphocreatine (PCr) in the context of HI/R. We established an in vitro ischemia/reperfusion model using hepatocellular carcinoma HepG2 cells and normal liver L02 cells. For in vivo assessments, C57BL/6 mice were subjected to the HI/R model to evaluate the impact of PCr on liver protection. PCr pretreatment significantly improved liver cell survival rates, maintained mitochondrial membrane potential (MMP), reduced apoptosis, and alleviated oxidative damage and inflammatory responses. Importantly, PCr exerted its protective effects by downregulating TLR4 and activating the Akt signaling pathway, which suppressed inflammation, mitigated oxidative stress, inhibited apoptosis, and modulated key biomarkers, including ALT, AST, IL-6, IL-1β, TNF-α, SOD, MDA, and reactive oxygen species (ROS). Western blot analyses demonstrated PCr's anti-inflammatory effects through the regulation of UCP2, Cyp-D, Cyt-C, and PGC-1α, thereby preserving mitochondrial structure and function, maintaining MMP, and regulating membrane pores. Transmission electron microscopy further highlighted PCr's role in sustaining mitochondrial integrity. In conclusion, our findings suggest that PCr helps maintain mitochondrial homeostasis by intervening in the TLR4 inflammatory pathway and activating the Akt signaling pathway, ultimately reducing liver injury. This study offers new insights and potential treatment strategies for HI/R, providing valuable guidance for future clinical applications.
Collapse
Affiliation(s)
- Fu Han Wang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Peng Chu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| | - Ze Yao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
6
|
Tohme C, Haykal T, Yang R, Austin TJ, Loughran P, Geller DA, Simmons RL, Tohme S, Yazdani HO. ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia-Reperfusion Injury and the Progression of Hepatic Metastases. Cells 2024; 13:1448. [PMID: 39273020 PMCID: PMC11393917 DOI: 10.3390/cells13171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.
Collapse
Affiliation(s)
- Celine Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Tony Haykal
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Ruiqi Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Taylor J. Austin
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| |
Collapse
|
7
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
8
|
Jiang Z, Li W, Yu S, Wang X, Jiang H, Bai C, Li M, Chu F, Jiang J, Ma X. IL-22 relieves hepatic ischemia-reperfusion injury by inhibiting mitochondrial apoptosis based on the activation of STAT3. Int J Biochem Cell Biol 2024; 166:106503. [PMID: 38036287 DOI: 10.1016/j.biocel.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22) has been proven to exhibit a protective role in hepatic ischemia-reperfusion injury (HIRI). This study aimed to explore the change of IL-22 and IL-22 receptor 1 (IL-22R1) axis in HIRI and its role in mitochondrial apoptosis associated with STAT3 activation. MATERIALS AND METHODS I/R mice were examined for the expression of IL-22, IL-22R1 and IL-22BP. The roles of IL-22 in hepatic histopathology and oxidative stress injuries (ALT, MDA and SOD) were determined. Oxidative stress damages of AML-12 cells were induced by H2O2, and were indicated by apoptosis, Ca2+ concentration, and mitochondrial function. The effects of IL-22 on p-STAT3Try705 were analyzed. RESULTS We found that the expression of IL-22, IL-22R1, and IL-22BP was elevated 24 h after I/R induction, while decreased 48 h after I/R induction. Furthermore, we also discovered that IL-22 rescued the morphological damages and dysfunction of hepatocytes induced by H2O2, which were antagonized by IL-22BP, an endogenous antagonist of IL-22. Additionally, increased levels of Ca2+ concentration, MDA, ROS, apoptosis and mitochondrial dysfunction were noticed in H2O2-treated hepatocytes. However, IL-22 ameliorated the effects of I/R or H2O2. The protective effects of IL-22 were reversed by AG490, a specific antagonist of STAT3. CONCLUSIONS In conclusion, our results indicated that IL-22 inhibited I/R-induced oxidative stress injury, Ca2+ overload, and mitochondrial apoptosis via STAT3 activation.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China; Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wanzhen Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Shuna Yu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongxin Jiang
- Morphology Lab, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Chen Bai
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Ming Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Fangfang Chu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Jiying Jiang
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China.
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
9
|
Mohite R, Doshi G. A Review of Proposed Mechanisms in Rheumatoid Arthritis and Therapeutic Strategies for the Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:291-301. [PMID: 37861027 DOI: 10.2174/0118715303250834230923234802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hypotheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferatoractivated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.
Collapse
Affiliation(s)
- Rupali Mohite
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
10
|
Luan H, Wang Z, Zhang Z, Hou B, Liu Z, Yang L, Yang M, Ma Y, Zhang B. Brassica oleracea L. extract ameliorates isoproterenol-induced myocardial injury by regulating HIF-1α-mediated glycolysis. Fitoterapia 2024; 172:105715. [PMID: 37907131 DOI: 10.1016/j.fitote.2023.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Brassica oleracea L. (BO) is an important vegetable with proven health benefits. This study aimed to elucidate the constituents of BO leaf extract (BOE) and evaluate its effect on myocardial injury. For this purpose, the constituents of BOE were identified using ultra-high performance liquid chromatography with quadrupole time-of- flight mass spectrometry, and 26 compounds were determined, including glucosinolates, sulfur compounds, alkaloids, phenolic acids, flavones, and two other kinds of compounds. The effects of BOE on myocardial cells were evaluated using isoproterenol (ISO)-treated H9C2 cells and Wistar rats, and the results revealed that BOE could inhibit cardiomyocyte hypertrophy and reduce the levels of B-type natriuretic peptide, nitric oxide, reactive oxygen species, lactic acid, and pyruvic acid. Meanwhile, BOE could increase the levels of mitochondrial membrane potential. Moreover, BOE could reduce the levels of apoptosis- and glycolysis-related proteins. Taken together, our data demonstrated that BOE treatment could alleviate ISO-induced myocardial cell injury by downregulating apoptosis and glycolysis signals.
Collapse
Affiliation(s)
- Huiling Luan
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenhui Wang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenzhen Zhang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Baohua Hou
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenzhen Liu
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Lanping Yang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Mengmeng Yang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Yile Ma
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Baobao Zhang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China.
| |
Collapse
|
11
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Zhong Q, Zheng K, Li W, An K, Liu Y, Xiao X, Hai S, Dong B, Li S, An Z, Dai L. Post-translational regulation of muscle growth, muscle aging and sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127279 DOI: 10.1002/jcsm.13241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle makes up 30-40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanmeng Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xina Xiao
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Chen M, Yan R, Luo J, Ning J, Zhou R, Ding L. The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons. Neurochem Res 2023:10.1007/s11064-023-03934-8. [PMID: 37097395 DOI: 10.1007/s11064-023-03934-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Neurons are highly dependent on mitochondrial ATP production and Ca2+ buffering. Neurons have unique compartmentalized anatomy and energy requirements, and each compartment requires continuously renewed mitochondria to maintain neuronal survival and activity. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key factor in the regulation of mitochondrial biogenesis. It is widely accepted that mitochondria are synthesized in the cell body and transported via axons to the distal end. However, axonal mitochondrial biogenesis is necessary to maintain axonal bioenergy supply and mitochondrial density due to limitations in mitochondrial axonal transport rate and mitochondrial protein lifespan. In addition, impaired mitochondrial biogenesis leading to inadequate energy supply and neuronal damage has been observed in neurological disorders. In this review, we focus on the sites where mitochondrial biogenesis occurs in neurons and the mechanisms by which it maintains axonal mitochondrial density. Finally, we summarize several neurological disorders in which mitochondrial biogenesis is affected.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
15
|
Aggarwal R, Potel KN, Shao A, So SW, Swingen C, Reyes CP, Rose R, Wright C, Hocum Stone LL, McFalls EO, Butterick TA, Kelly RF. An Adjuvant Stem Cell Patch with Coronary Artery Bypass Graft Surgery Improves Diastolic Recovery in Porcine Hibernating Myocardium. Int J Mol Sci 2023; 24:ijms24065475. [PMID: 36982547 PMCID: PMC10049498 DOI: 10.3390/ijms24065475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Diastolic dysfunction persists despite coronary artery bypass graft surgery (CABG) in patients with hibernating myocardium (HIB). We studied whether the adjunctive use of a mesenchymal stem cells (MSCs) patch during CABG improves diastolic function by reducing inflammation and fibrosis. HIB was induced in juvenile swine by placing a constrictor on the left anterior descending (LAD) artery, causing myocardial ischemia without infarction. At 12 weeks, CABG was performed using the left-internal-mammary-artery (LIMA)-to-LAD graft with or without placement of an epicardial vicryl patch embedded with MSCs, followed by four weeks of recovery. The animals underwent cardiac magnetic resonance imaging (MRI) prior to sacrifice, and tissue from septal and LAD regions were collected to assess for fibrosis and analyze mitochondrial and nuclear isolates. During low-dose dobutamine infusion, diastolic function was significantly reduced in HIB compared to the control, with significant improvement after CABG + MSC treatment. In HIB, we observed increased inflammation and fibrosis without transmural scarring, along with decreased peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), which could be a possible mechanism underlying diastolic dysfunction. Improvement in PGC1α and diastolic function was noted with revascularization and MSCs, along with decreased inflammatory signaling and fibrosis. These findings suggest that adjuvant cell-based therapy during CABG may recover diastolic function by reducing oxidant stress–inflammatory signaling and myofibroblast presence in the myocardial tissue.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Koray N. Potel
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Annie Shao
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Simon W. So
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (S.W.S.); (T.A.B.)
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Cory Swingen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Christina P. Reyes
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Rebecca Rose
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Christin Wright
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Laura L. Hocum Stone
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
| | - Edward O. McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, VA 23249, USA;
| | - Tammy A. Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (S.W.S.); (T.A.B.)
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Rosemary F. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (R.A.); (A.S.); (C.S.); (C.P.R.); (R.R.); (C.W.); (L.L.H.S.)
- Correspondence: ; Tel.: +1-612-625-3902
| |
Collapse
|
16
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
18
|
Aggarwal R, Potel KN, McFalls EO, Butterick TA, Kelly RF. Novel Therapeutic Approaches Enhance PGC1-alpha to Reduce Oxidant Stress-Inflammatory Signaling and Improve Functional Recovery in Hibernating Myocardium. Antioxidants (Basel) 2022; 11:2155. [PMID: 36358527 PMCID: PMC9686496 DOI: 10.3390/antiox11112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/02/2023] Open
Abstract
Ischemic heart disease affects millions of people around the world. Current treatment options, including coronary artery bypass grafting, do not result in full functional recovery, highlighting the need for novel adjunctive therapeutic approaches. Hibernation describes the myocardial response to prolonged ischemia and involves a set of complex cytoprotective metabolic and functional adaptations. PGC1-alpha, a key regulator of mitochondrial energy metabolism and inhibitor of oxidant-stress-inflammatory signaling, is known to be downregulated in hibernating myocardium. PGC1-alpha is a critical component of cellular stress responses and links cellular metabolism with inflammation in the ischemic heart. While beneficial in the acute setting, a chronic state of hibernation can be associated with self-perpetuating oxidant stress-inflammatory signaling which leads to tissue injury. It is likely that incomplete functional recovery following revascularization of chronically ischemic myocardium is due to persistence of metabolic changes as well as prooxidant and proinflammatory signaling. Enhancement of PGC1-alpha signaling has been proposed as a possible way to improve functional recovery in patients with ischemic heart disease. Adjunctive mesenchymal stem cell therapy has been shown to induce PGC1-alpha signaling in hibernating myocardium and could help improve clinical outcomes for patients undergoing bypass surgery.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Koray N. Potel
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edward O. McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, VA 23249-4915, USA
| | - Tammy A. Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Research, Center for Veterans Research and Education, Minneapolis, MN 55417, USA
| | - Rosemary F. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Cellular senescence in ischemia/reperfusion injury. Cell Death Dis 2022; 8:420. [PMID: 36253355 PMCID: PMC9576687 DOI: 10.1038/s41420-022-01205-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Ischemia/reperfusion (IR) injury, a main reason of mortality and morbidity worldwide, occurs in many organs and tissues. As a result of IR injury, senescent cells can accumulate in multiple organs. Increasing evidence shows that cellular senescence is the underlying mechanism that transforms an acute organ injury into a chronic one. Several recent studies suggest senescent cells can be targeted for the prevention or elimination of acute and chronic organ injury induced by IR. In this review, we concisely introduce the underlying mechanism and the pivotal role of premature senescence in the transition from acute to chronic IR injuries. Special focus is laid on recent advances in the mechanisms as well as on the basic and clinical research, targeting cellular senescence in multi-organ IR injuries. Besides, the potential directions in this field are discussed in the end. Together, the recent advances reviewed here will act as a comprehensive overview of the roles of cellular senescence in IR injury, which could be of great significance for the design of related studies, or as a guide for potential therapeutic target.
Collapse
|
20
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
RNA-Seq Profiling to Investigate the Mechanism of Qishen Granules on Regulating Mitochondrial Energy Metabolism of Heart Failure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:5779307. [PMID: 35003305 PMCID: PMC8741342 DOI: 10.1155/2021/5779307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Background. Qishen granules (QSG) are a frequently prescribed formula with cardioprotective properties prescribed to HF for many years. RNA-seq profiling revealed that regulation on cardiac mitochondrial energy metabolism is the main therapeutic effect. However, the underlying mechanism is still unknown. In this study, we explored the effects of QSG on regulating mitochondrial energy metabolism and oxidative stress through the PGC-1α/NRF1/TFAM signaling pathway. RNA-seq technology revealed that QSG significantly changed the differential gene expression of mitochondrial dysfunction in myocardial ischemic tissue. The mechanism was verified through the left anterior descending artery- (LAD-) induced HF rat model and oxygen glucose deprivation/recovery- (OGD/R-) established H9C2 induction model both in vivo and in vitro. Echocardiography and HE staining showed that QSG could effectively improve the cardiac function of rats with myocardial infarction in functionality and structure. Furthermore, transcriptomics revealed QSG could significantly regulate mitochondrial dysfunction-related proteins at the transcriptome level. The results of electron microscopy and immunofluorescence proved that the mitochondrial morphology, mitochondrial membrane structural integrity, and myocardial oxidative stress damage can be effectively improved after QSG treatment. Mechanism studies showed that QSG increased the expression level of mitochondrial biogenesis factor PGC-1α/NRF1/TFAM protein and regulated the balance of mitochondrial fusion/fission protein expression. QSG could regulate mitochondrial dysfunction in ischemia heart tissue to protect cardiac function and structure in HF rats. The likely mechanism is the adjustment of PGC-1α/NRF1/TFAM pathway to alleviate oxidative stress in myocardial cells. Therefore, PGC-1α may be a potential therapeutic target for improving mitochondrial dysfunction in HF.
Collapse
|
22
|
Zhang H, Liu Y, Cao X, Wang W, Cui X, Yang X, Wang Y, Shi J. Nrf2 Promotes Inflammation in Early Myocardial Ischemia-Reperfusion via Recruitment and Activation of Macrophages. Front Immunol 2021; 12:763760. [PMID: 34917083 PMCID: PMC8669137 DOI: 10.3389/fimmu.2021.763760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis in response to inflammation is a primary cause of myocardial ischemia-reperfusion injury (IRI). Nuclear factor erythroid 2 like 2 (Nrf2) reportedly plays an important role in myocardial IRI, but the underlying mechanism remains obscure. Expression data from the normal heart tissues of mice or heart tissues treated with reperfusion for 6 h after ischemia (IR6h) were acquired from the GEO database; changes in biological function and infiltrating immune cells were analyzed. The binding between the molecules was verified by chromatin immunoprecipitation sequencing. Based on confirmation that early myocardial ischemia-reperfusion (myocardial ischemia/reperfusion for 6 hours, IR6h) promoted myocardial apoptosis and inflammatory response, we found that Nrf2, cooperating with Programmed Cell Death 4, promoted transcription initiation of C-C Motif Chemokine Ligand 3 (Ccl3) in myocardial tissues of mice treated with IR6h. Moreover, Ccl3 contributed to the high signature score of C-C motif chemokine receptor 1 (Ccr1)-positive macrophages. The high signature score of Ccr1-positive macrophages leads to the release of pro-inflammatory factors interleukin 1 beta and interleukin 6. This study is the first to elucidate the damaging effect of Nrf2 via remodeling of the immune microenvironment in early myocardial ischemia-reperfusion, which provides us with new perspectives and treatment strategies for myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haijian Zhang, ; Jiahai Shi,
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Wenmiao Wang
- Graduate School, Dalian Medical University, Dalian, China
| | - Xiaohong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai, China
| | - Xuechao Yang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haijian Zhang, ; Jiahai Shi,
| |
Collapse
|