1
|
Ding L, Sun M, Sun Y, Li J, Zhang Z, Dang S, Zhang J, Yang B, Dai Y, Zhou Q, Zhou D, Li E, Peng S, Li G. MCM8 promotes gastric cancer progression through RPS15A and predicts poor prognosis. Cancer Med 2024; 13:e7424. [PMID: 38988047 PMCID: PMC11236911 DOI: 10.1002/cam4.7424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.
Collapse
Affiliation(s)
- Lixian Ding
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Mingjun Sun
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Yanyan Sun
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Jinxing Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Zhicheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Shuwei Dang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Surgery Teaching and Research OfficeThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Jinning Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Bang Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Youlin Dai
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Qinghao Zhou
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Dazhi Zhou
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Encheng Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Shuqi Peng
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Guodong Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Surgery Teaching and Research OfficeThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| |
Collapse
|
2
|
Tavlas P, Nikou S, Geramoutsou C, Bosgana P, Tsaniras SC, Melachrinou M, Maroulis I, Bravou V. CUL4A Ubiquitin Ligase Is an Independent Predictor of Overall Survival in Pancreatic Adenocarcinoma. Cancer Genomics Proteomics 2024; 21:166-177. [PMID: 38423594 PMCID: PMC10905276 DOI: 10.21873/cgp.20438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND/AIM Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with dismal prognosis. Genomic instability due to defects in cell-cycle regulation/mitosis or deficient DNA-damage repair is a major driver of PDAC progression with clinical relevance. Deregulation of licensing of DNA replication leads to DNA damage and genomic instability, predisposing cells to malignant transformation. While overexpression of DNA replication-licensing factors has been reported in several human cancer types, their role in PDAC remains largely unknown. We aimed here to examine the expression and prognostic significance of the DNA replication-licensing factors chromatin licensing and DNA replication factor 1 (CDT1), cell-division cycle 6 (CDC6), minichromosome maintenance complex component 7 (MCM7) and also of the ubiquitin ligase regulator of CDT1, cullin 4A (CUL4A), in PDAC. MATERIALS AND METHODS Expression levels of CUL4, CDT1, CDC6 and MCM7 were evaluated by immunohistochemistry in 76 formalin-fixed paraffin-embedded specimens of PDAC patients in relation to DNA-damage response marker H2AX, clinicopathological parameters and survival. We also conducted bioinformatics analysis of data from online available databases to corroborate our findings. RESULTS CUL4A and DNA replication-licensing factors were overexpressed in patients with PDAC and expression of CDT1 positively correlated with H2AX. Expression of CUL4A and CDT1 positively correlated with lymph node metastasis. Importantly, elevated CUL4A expression was associated with reduced overall survival and was an independent indicator of poor prognosis on multivariate analysis. CONCLUSION Our findings implicate CUL4A, CDT1, CDC6 and MCM7 in PDAC progression and identify CUL4A as an independent prognostic factor for this disease.
Collapse
Affiliation(s)
- Panagiotis Tavlas
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
- Department of Surgery, University General Hospital of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | - Christina Geramoutsou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | - Pinelopi Bosgana
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Spyridon Champeris Tsaniras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
- International Institute of Anticancer Research, Kapandriti, Greece
| | - Maria Melachrinou
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Maroulis
- Department of Surgery, University General Hospital of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece;
| |
Collapse
|
3
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Wang Z, Qiu H, Li Y, Zhao M, Liu R. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum. Commun Biol 2024; 7:241. [PMID: 38418849 PMCID: PMC10902306 DOI: 10.1038/s42003-024-05942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yefan Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China.
| |
Collapse
|
5
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
6
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
7
|
Shen Y, Zhao P, Dong K, Wang J, Li H, Li M, Li R, Chen S, Shen Y, Liu Z, Xie M, Shen P, Zhang J. Tadalafil increases the antitumor activity of 5-FU through inhibiting PRMT5-mediated glycolysis and cell proliferation in colorectal cancer. Cancer Metab 2022; 10:22. [PMID: 36474242 PMCID: PMC9727889 DOI: 10.1186/s40170-022-00299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein arginine methyltransferase 5 (PRMT5) is upregulated in multiple tumors and plays a pivotal role in cancer cell proliferation. However, the role of PRMT5 in colorectal cancer remains poorly understood. METHODS We detected the expression level of PRMT5 and glycolytic enzymes using online databases and colorectal cancer cell lines by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. And MTT and colony formation assays were conducted to investigate cell proliferation. Then, we evaluated ECAR and OCR levels using a biological energy analyzer to investigate the energy status of colorectal cancer, and the transcriptional regulation was detected by dual luciferase reporter assay and ChIP assay. Finally, the efficacy of combined treatment of tadalafil and 5-FU was verified. RESULTS PRMT5 was highly expressed in colorectal cancer tissues compared with their normal counterparts and correlated with poor prognosis in CRC patients. Then, we demonstrated that PRMT5 knockdown or loss of function attenuated the viability of CRC cells, while overexpression of PRMT5 promoted cell proliferation. Mechanistically, PRMT5 enhanced glycolysis through transcriptionally activating LDHA expression. In addition, the PRMT5 inhibitor, tadalafil, rendered CRC cells sensitive to antitumor agent 5-FU in vitro and in vivo. CONCLUSIONS Our data indicates that PRMT5 promoted colorectal cancer proliferation partially through activating glycolysis and may be a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yao Shen
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Pan Zhao
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Kewei Dong
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Jiajia Wang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Huichen Li
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Mengyang Li
- grid.414252.40000 0004 1761 8894The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ruikai Li
- grid.233520.50000 0004 1761 4404Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032 China
| | - Suning Chen
- grid.233520.50000 0004 1761 4404Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuxia Shen
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhiyu Liu
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032 China
| | - Mianjiao Xie
- grid.233520.50000 0004 1761 4404Department of Experimental Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032 China
| | - Peng Shen
- grid.284723.80000 0000 8877 7471Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jian Zhang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
8
|
Yuan J, Lan H, Huang D, Guo X, Liu C, Liu S, Zhang P, Cheng Y, Xiao S. Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer. Front Cell Dev Biol 2022; 10:852135. [PMID: 35693940 PMCID: PMC9174984 DOI: 10.3389/fcell.2022.852135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Minichromosome maintenance 2 (MCM2) is a member of the minichromosomal maintenance family of proteins that mainly regulates DNA replication and the cell cycle and is involved in regulating cancer cell proliferation in various cancers. Previous studies have reported that MCM2 plays a pivotal role in cell proliferation and cancer development. However, few articles have systematically reported the pathogenic roles of MCM2 across cancers. Therefore, the present pan-cancer study was conducted. Various computational tools were used to investigate the MCM2 expression level, genetic mutation rate, and regulating mechanism, immune infiltration, tumor diagnosis and prognosis, therapeutic response and drug sensitivity of various cancers. The expression and function of MCM2 were examined by Western blotting and CCK-8 assays. MCM2 was significantly upregulated in almost all cancers and cancer subtypes in The Cancer Genome Atlas and was closely associated with tumor mutation burden, tumor stage, and immune therapy response. Upregulation of MCM2 expression may be correlated with a high level of alterations rate. MCM2 expression was associated with the infiltration of various immune cells and molecules and markedly associated with a poor prognosis. Western blotting and CCK-8 assays revealed that MCM2 expression was significantly upregulated in melanoma cell lines. Our results also suggested that MCM2 promotes cell proliferation in vitro by activating cell proliferation pathways such as the Akt signaling pathways. This study explored the oncogenic role of MCM2 across cancers, provided data on the underlying mechanisms of these cancers for further research and demonstrated that MCM2 may be a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gynecology, The Second Hospital of Zhuzhou, Zhuzhou, China
| | - Xiaohui Guo
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chu Liu
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuping Liu
- Department of Rehabilitation, Changsha Central Hospital of University of South China, Changsha, China
| | - Peng Zhang
- Graduate Collaborative Training Base of the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| |
Collapse
|
9
|
Yang Z, Xiao T, Li Z, Zhang J, Chen S. Novel Chemicals Derived from Tadalafil Exhibit PRMT5 Inhibition and Promising Activities against Breast Cancer. Int J Mol Sci 2022; 23:ijms23094806. [PMID: 35563196 PMCID: PMC9103191 DOI: 10.3390/ijms23094806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer seriously endangers women’s health worldwide. Protein arginine methyltransferase 5 (PRMT5) is highly expressed in breast cancer and represents a potential druggable target for breast cancer treatment. However, because the currently available clinical PRMT5 inhibitors are relatively limited, there is an urgent need to develop new PRMT5 inhibitors. Our team previously found that the FDA-approved drug tadalafil can act as a PRMT5 inhibitor and enhance the sensitivity of breast cancer patients to doxorubicin treatment. To further improve the binding specificity of tadalafil to PRMT5, we chemically modified tadalafil, and designed three compounds, A, B, and C, based on the PRMT5 protein structure. These three compounds could bind to PRMT5 through different binding modes and inhibit histone arginine methylation. They arrested the proliferation and triggered the apoptosis of breast cancer cells in vitro and also promoted the antitumor effects of the chemotherapy drugs cisplatin, doxorubicin, and olaparib in combination regimens. Among them, compound A possessed the highest potency. Finally, the anti-breast cancer effects of PRMT5 inhibitor A and its ability to enhance chemosensitivity were further verified in a xenograft mouse model. These results indicate that the new PRMT5 inhibitors A, B, and C may be potential candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Tian Xiao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Zezhi Li
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
- Correspondence: (J.Z.); (S.C.)
| | - Suning Chen
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (J.Z.); (S.C.)
| |
Collapse
|
10
|
A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biol 2022; 20:e3001317. [PMID: 35192608 PMCID: PMC8863262 DOI: 10.1371/journal.pbio.3001317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.
Collapse
|
11
|
Multiomics profiling of the expression and prognosis of MCMs in endometrial carcinoma. Biosci Rep 2021; 41:230367. [PMID: 34859821 PMCID: PMC8685644 DOI: 10.1042/bsr20211719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Minichromosome maintenance (MCM) family members are a group of genes involved in regulating DNA replication and cell division and have been identified as oncogenes in various cancer types. Several experimental studies have suggested that MCMs are dysregulated in endometrial carcinoma (EC). However, the expression pattern, clinical value and functions of different MCMs have yet to be analyzed systematically and comprehensively. We analyzed expression, survival rate, DNA alteration, PPT network, GGI network, functional enrichment cancer hallmarks and drug sensitivity of MCMs in patients with EC based on diverse datasets, including Oncomine, GEPIA, Kaplan–Meier Plotter, HPA, Sangerbox and GSCALite databases. The results indicated that most MCM members were increased in EC and showed a prognostic value in survival analysis, which were considerately well in terms of PFS and OS prognostic prediction. Importantly, functional enrichment, PPI network and GGI network suggested that MCMs interact with proteins related to DNA replication and cell division, which may be the mechanism of MCM promote EC progression. Further data mining illustrated that MCMs have broad DNA hypomethylation levels and high levels of copy number aberrations in tumor tissue samples, which may be the mechanism causing the high expression level of MCMs. Moreover, MCM2 can activate or suppress diverse cancer-related pathways and is implicated in EC drug sensitivity. Taking together, our findings illustrate the expression pattern, clinical value and function of MCMs in EC and imply that MCMs are potential targets for precision therapy and new biomarkers for the prognosis of patients with EC.
Collapse
|
12
|
Li X, Wang X, Zhao J, Wang J, Wu J. PRMT5 promotes colorectal cancer growth by interaction with MCM7. J Cell Mol Med 2021; 25:3537-3547. [PMID: 33675123 PMCID: PMC8034445 DOI: 10.1111/jcmm.16436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse arginine methylation of histones and non‐histone proteins. Accumulating evidence indicates that PRMT5 promotes cancer development and progression. However, its function in colorectal cancer (CRC) is poorly understood. In this study, we revealed the oncogenic roles of PRMT5 in CRC. We found that PRMT5 promoted CRC cell proliferation, migration and invasion in vitro and in vivo. We identified minichromosome maintenance‐7 (MCM7) as the direct PRMT5‐binding partner. A co‐immunoprecipitation (co‐IP) assay indicated that PRMT5 physically interacted with MCM7 and that the direct binding domain was located between residues 1‐248 in MCM7. In addition, our results from analysis of 99 CRC tissues and 77 adjacent non‐cancerous tissues indicated that the PRMT5 and MCM7 expression levels were significantly higher in CRC tissues than in control tissues, which was further confirmed by bioinformatic analysis using TCGA and GEO datasets. We also found that MCM7 promoted CRC cell proliferation, migration and invasion in vitro. Furthermore, we observed that increased PRMT5 expression predicted unfavourable patient survival in CRC patients and in the subgroup of patients with a tumour size of ≤5 cm. These data suggested that PRMT5 and MCM7 might be novel potential targets for the treatment of CRC.
Collapse
Affiliation(s)
- Xiangwei Li
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Wang
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Zhao
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Liang Z, Liu L, Wen C, Jiang H, Ye T, Ma S, Liu X. Clinicopathological and Prognostic Significance of PRMT5 in Cancers: A System Review and Meta-Analysis. Cancer Control 2021; 28:10732748211050583. [PMID: 34758643 PMCID: PMC8591649 DOI: 10.1177/10732748211050583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Since protein arginine methyltransferase 5 (PRMT5) is abnormally expressed in various tumors, in this study we aim to assess the association between PRMT5 and clinicopathological and prognostic features. METHODS Electronic databases including PubMed, Web of Science, Scopus, ScienceDirect, and the Cochrane Library were searched until July 25, 2021. The critical appraisal of the eligible studies was performed using the Newcastle-Ottawa Quality Assessment Scale. Pooled hazard ratios (HR) and pooled odds ratios (OR) were calculated to assess the effect. Engauge Digitizer version 12.1, STATA version 15.1, and R version 4.0.5 were used to obtain and analysis the data. RESULTS A total of 32 original studies covering 15,583 patients were included. In our data, it indicated that high level of PRMT5 was significantly correlated with advanced tumor stage (OR = 2.12, 95% CI: 1.22-3.70, P =.008; I2 = 80.7%) and positively correlated with poor overall survival (HR = 1.59, 95% CI: 1.46-1.73, P < .001; I2 = 50%) and progression-free survival (HR = 1.53, 95% CI: 1.24-1.88, P < .001; I2 = 0%). In addition, sub-group analysis showed that high level of PRMT5 was associated with poor overall survival for such 5 kinds of cancers as hepatocellular carcinoma, pancreatic cancer, breast cancer, gastric cancer, and lung cancer. CONCLUSION For the first time we found PRMT5 was pan-cancerous as a prognostic biomarker and high level of PRMT5 was associated with poor prognosis for certain cancers.
Collapse
Affiliation(s)
- Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lianchang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianxia Ye
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|