1
|
Chen J, Wang Z, Yi M, Yang Y, Tian M, Liu Y, Wang G, Shen H. Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears. J Transl Med 2025; 23:47. [PMID: 39800717 PMCID: PMC11727793 DOI: 10.1186/s12967-024-06029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
ABSTRCT Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures. Further investigations have revealed that these failures are largely attributable to delayed healing at the tendon-bone interface, excessive formation of vascularized scar tissue, and inadequate integration of tendon grafts within bone tunnels. As a result, the healing process of rotator cuff injuries faces significant challenges.Bone marrow-derived mesenchymal stem cell exosomes (BMSC-exos) have emerged as a prominent focus of research within the field of bioengineering, owing to their remarkable potential to regulate cellular proliferation and differentiation, modulate immune responses, and facilitate tissue repair and regeneration following cellular damage. In this review, we explore the anti-inflammatory, angiogenic, anti-scarring, and bone metabolism-modulating effects of BMSC-exos in the context of rotator cuff injury. Additionally, we address the limitations and ongoing challenges within current research, offering insights that could guide the clinical application of BMSC-exos in the treatment of rotator cuff injuries in the future.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zihe Wang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yi
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Yang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengzhao Tian
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinqi Liu
- School of Materials and Energy, Southwest University, Southwest University Hospital, Chongqing, China.
| | - Guoyou Wang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Huarui Shen
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Strategy for Age-Related Diseases. Cell Prolif 2024:e13795. [PMID: 39704104 DOI: 10.1111/cpr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The global increase in the aging population has led to a concurrent rise in the incidence of age-related diseases, posing substantial challenges to healthcare systems and affecting the well-being of the elderly. Identifying and securing effective treatments has become an urgent priority. In this context, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising and innovative modality in the field of anti-aging medicine, offering a multifaceted therapeutic approach. MSC-Exos demonstrate significant potential due to their immunomodulatory and anti-inflammatory properties, their ability to inhibit oxidative stress, and their reparative effects on senescent tissues. These attributes make them valuable in combating a range of conditions associated with aging, such as cardiovascular diseases, neurodegeneration, skin aging, and osteoarthritis. The integration of exosomes with membrane-penetrating peptides introduces a novel strategy for the delivery of biomolecules, surmounting traditional cellular barriers and enhancing therapeutic efficacy. This review provides a comprehensive synthesis of the current understanding of MSC-Exos, underscoring their role as a novel and potent therapeutic strategy against the intricate challenges of age-related diseases.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mengting Wei
- School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province, China
| | - Ting Fan
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Zhang X, Zhang R, Wang Y, Li L, Zhong Z. CDK5 Upregulated by ELF3 Transcription Promotes IL-1β-induced Inflammation and Extracellular Matrix Degradation in Human Chondrocytes. Cell Biochem Biophys 2024; 82:3333-3344. [PMID: 39020088 DOI: 10.1007/s12013-024-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Osteoarthritis (OA) is a common chronic disease with age-associated increase in both incidence and prevalence. The cyclin-dependent kinase 5 (CDK5), which is a member of the CDK family, is involved in many chronic diseases. This study was performed to explore the functional role of CDK5 in OA and to discuss the detailed molecular mechanisms. The expressions of CDK5 and ELF3 before or after transfection were detected with reverse transcription-quantitative PCR (RT-qPCR) and western blot. 5-ethynyl-2'-deoxyuridine (Edu) and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assays were used to detect the proliferation and apoptosis of C28/I2 cells. The levels of inflammatory cytokines were estimated using enzyme-linked immunosorbent assay (ELISA) while the expressions of proteins implicated in extracellular matrix (ECM) degradation- and apoptosis were detected using western blot. Additionally, the activity of CDK5 promoters and its binding with ELF3 were detected using luciferase activity assay and chromatin immunoprecipitation (CHIP) assay. In the present study, it was discovered that the mRNA and protein expressions of CDK5 were significantly increased in IL-1β-induced C28/I2 cells. After depleting CDK5 expression, the apoptosis, inflammation and ECM in C28/I2 cells with IL-1β induction were suppressed. It was also found that ELF3 expression was increased in IL-1β-induced C28/I2 cells and acted as a transcription factor binding to the CDK5 promoter to regulate its transcriptional expression. The further experiments evidenced that ELF3 overexpression partially reversed the inhibitory effects of CDK5 deficiency on IL-1β-induced apoptosis, inflammation and ECM in C28/I2 cells. Collectively, CDK5 that upregulated by ELF3 transcription could promote the development of OA.
Collapse
Affiliation(s)
- Xuyuan Zhang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Ruize Zhang
- School of Optoelectronic Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310007, PR China
| | - Yinhai Wang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Liang Li
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Zong Zhong
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China.
| |
Collapse
|
4
|
Lu J, Shi X, Zhou Z, Lu N, Chu G, Jin H, Zhu L, Chen A. Enhancing Fracture Healing with 3D Bioprinted Hif1a-Overexpressing BMSCs Hydrogel: A Novel Approach to Accelerated Bone Repair. Adv Healthc Mater 2024:e2402415. [PMID: 39580668 DOI: 10.1002/adhm.202402415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Addressing the urgent need for effective fracture treatments, this study investigates the efficacy of a 3D bioprinted biomimetic hydrogel, enriched with bone marrow mesenchymal stem cells (BMSCs) and targeted hypoxia-inducible factor 1 alpha (Hif1a) gene activation, in enhancing fracture healing. A photocross-linkable bioink, gelatin methacryloyl bone matrix anhydride (GBMA) is developed, and selected its 5% concentration for bioink formulation. Rat BMSCs are isolated and combined with GBMA to create the GBMA@BMSCs bioink. This bioink is then used in 3D bioprinting to fabricate a hydrogel for application in a rat femoral fracture model. Through transcriptome sequencing, WGCNA, and Venn analysis, the hypoxia-inducible factor Hif1a is identified as a critical gene in the fracture healing process. In vitro studies showed that Hif1a promoted BMSC proliferation, chondrogenic differentiation, and cartilage matrix stability. The in vivo application of the GBMA@BMSCs hydrogel with Hif1a overexpression significantly accelerated fracture healing, evidenced by early and enhanced cartilage callus formation. The study demonstrates that 3D bioprinting of GBMA@BMSCs hydrogel, particularly with Hif1a-enhanced BMSCs, offers a promising approach for rapid and effective fracture repair.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Xiaojian Shi
- Department of Orthopedic Trauma, Haimen People's Hospital of Jiangsu Province, Haimen, 226100, P. R. China
| | - Zhibin Zhou
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, P. R. China
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Aimin Chen
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
5
|
Jin P, Liu H, Chen X, Liu W, Jiang T. From Bench to Bedside: The Role of Extracellular Vesicles in Cartilage Injury Treatment. Biomater Res 2024; 28:0110. [PMID: 39583872 PMCID: PMC11582190 DOI: 10.34133/bmr.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Huan Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Xichi Chen
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University,
Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma; Hainan Provincial Stem Cell Research Institute; Hainan Academy of Medical Sciences,
Hainan Medical University, Haikou 571199, China
| |
Collapse
|
6
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
8
|
José Alcaraz M. Control of articular degeneration by extracellular vesicles from stem/stromal cells as a potential strategy for the treatment of osteoarthritis. Biochem Pharmacol 2024; 228:116226. [PMID: 38663683 DOI: 10.1016/j.bcp.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint condition that contributes to years lived with disability. Current therapeutic approaches are limited as there are no disease-modifying interventions able to delay or inhibit the progression of disease. In recent years there has been an increasing interest in the immunomodulatory and regenerative properties of mesenchymal stem/stromal cells (MSCs) to develop new OA therapies. Extracellular vesicles (EVs) mediate many of the biological effects of these cells and may represent an alternative avoiding the limitations of cell-based therapy. There is also a growing interest in EV modifications to enhance their efficacy and applications. Recent preclinical studies have provided strong evidence supporting the potential of MSC EVs for the development of OA treatments. Thus, MSC EVs may regulate chondrocyte functions to avoid cartilage destruction, inhibit abnormal subchondral bone metabolism and synovial tissue alterations, and control pain behavior. EV actions may be mediated by the transfer of their cargo to target cells, with an important role for proteins and non-coding RNAs modulating signaling pathways relevant for OA progression. Nevertheless, additional investigations are needed concerning EV optimization, and standardization of preparation procedures. More research is also required for a better knowledge of possible effects on different OA phenotypes, pharmacokinetics, mechanism of action, long-term effects and safety profile. Furthermore, MSC EVs have a high potential as vehicles for drug delivery or as adjuvant therapy to potentiate or complement the effects of other approaches.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
9
|
Jones M, Jones E, Kouroupis D. The Use of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles in the Treatment of Osteoarthritis: Insights from Preclinical Studies. Bioengineering (Basel) 2024; 11:961. [PMID: 39451337 PMCID: PMC11504680 DOI: 10.3390/bioengineering11100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Osteoarthritis (OA) is a prominent cause of disability, and has severe social and economic ramifications across the globe. The main driver of OA's pervasiveness is the fact that no current medical interventions exist to reverse or even attenuate the degeneration of cartilage within the articular joint. Crucial for cell-to-cell communication, extracellular vesicles (EVs) contribute to OA progression through the delivery of bioactive molecules in the inflammatory microenvironment. By repurposing this acellular means of signal transmission, therapeutic drugs may be administered to degenerated cartilage tissue in the hopes of encouraging regeneration. Positive outcomes are apparent in in vivo studies on this subject; however, for this therapy to prove itself in the clinical world, efforts towards standardizing the characterization, application, biological contents, and dosage are essential.
Collapse
Affiliation(s)
- Mitch Jones
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK;
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS2 9JT, UK
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Qiu S, Cao L, Xiang D, Wang S, Wang D, Qian Y, Li X, Zhou X. Enhanced osteogenic differentiation in 3D hydrogel scaffold via macrophage mitochondrial transfer. J Nanobiotechnology 2024; 22:540. [PMID: 39237942 PMCID: PMC11375923 DOI: 10.1186/s12951-024-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined macrophage mitochondrial transfer and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Scaffold efficacy was assessed through alkaline phosphatase (ALP), Alizarin Red S (ARS) staining, and in vivo experiments. The scaffold demonstrated excellent biocompatibility and antioxidant-immune regulation. Single-cell sequencing revealed a shift in macrophage distribution towards the M2 phenotype. In vitro experiments showed that macrophage mitochondria promoted BMSCs' osteogenic differentiation. In vivo experiments confirmed accelerated fracture healing. The GAD/Ag-pIO scaffold enhances osteogenic differentiation and fracture healing through immunomodulation and promotion of macrophage mitochondrial transfer.
Collapse
Affiliation(s)
- Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, China
| | - Dingding Xiang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Shu Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Di Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Yiyi Qian
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Xiaohua Li
- Department of Orthopedics, Zhongmeng Hospital, Arong Banner, Hulunbuir City, Inner, Mongolia
| | - Xiaoshu Zhou
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
12
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
13
|
Karoichan A, Boucenna S, Tabrizian M. Therapeutics of the future: Navigating the pitfalls of extracellular vesicles research from an osteoarthritis perspective. J Extracell Vesicles 2024; 13:e12435. [PMID: 38943211 PMCID: PMC11213691 DOI: 10.1002/jev2.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 07/01/2024] Open
Abstract
Extracellular vesicles have gained wide momentum as potential therapeutics for osteoarthritis, a highly prevalent chronic disease that still lacks an approved treatment. The membrane-bound vesicles are secreted by all cells carrying different cargos that can serve as both disease biomarkers and disease modifiers. Nonetheless, despite a significant peak in research regarding EVs as OA therapeutics, clinical implementation seems distant. In addition to scalability and standardization challenges, researchers often omit to focus on and consider the proper tropism of the vesicles, the practicality and relevance of their source, their low native therapeutic efficacy, and whether they address the disease as a whole. These considerations are necessary to better understand EVs in a clinical light and have been comprehensively discussed and ultimately summarized in this review into a conceptualized framework termed the nanodiamond concept. Future perspectives are also discussed, and alternatives are presented to address some of the challenges and concerns.
Collapse
Affiliation(s)
- Antoine Karoichan
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Boucenna
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
14
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
15
|
Ma T, Xu G, Gao T, Zhao G, Huang G, Shi J, Chen J, Song J, Xia J, Ma X. Engineered Exosomes with ATF5-Modified mRNA Loaded in Injectable Thermogels Alleviate Osteoarthritis by Targeting the Mitochondrial Unfolded Protein Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21383-21399. [PMID: 38626424 DOI: 10.1021/acsami.3c17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1β-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.
Collapse
Affiliation(s)
- Tiancong Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guangyu Xu
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Tian Gao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guanglei Zhao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Gangyong Huang
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jingsheng Shi
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jie Chen
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jian Song
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jun Xia
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Xiaosheng Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| |
Collapse
|
16
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Jiang Y, Lu Y, Xu H, Hu Z, Du R, Zhou Y, Deng Q, Wang X, Liu Y, Wang Y. miR-206a-3p suppresses the proliferation and differentiation of chicken chondrocytes in tibial dyschondroplasia by targeting BMP6. Poult Sci 2024; 103:103534. [PMID: 38401226 PMCID: PMC10906518 DOI: 10.1016/j.psj.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024] Open
Abstract
The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.
Collapse
Affiliation(s)
- Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Deng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
18
|
Dong S, Xu G, Li X, Guo S, Bai J, Zhao J, Chen L. Exosomes Derived from Quercetin-Treated Bone Marrow Derived Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis Through Delivering miR-124-3p to Chondrocytes. DNA Cell Biol 2024; 43:85-94. [PMID: 38241502 DOI: 10.1089/dna.2023.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease characterized by the progressive loss of cartilage and failure of the diarrheal joint. Quercetin has been reported to attenuate the development of OA. Bone marrow derived mesenchymal stem cell (BMSC)-derived exosomes are involved in OA progression. However, the role of BMSC-derived exosomes in quercetin-mediated progression of OA remains unclear. Western blotting and RT-qPCR were used to assess protein and mRNA levels, respectively. CCK8 assay was performed to assess cell viability, and cell apoptosis was assessed using flow cytometry. A dual-luciferase assay was performed to assess the relationship between miR-124-3p and TRAF6 expression. Furthermore, in vivo experiments were performed to test the function of exosomes derived from Quercetin-treated BMSCs in OA patients. IL-1β significantly inhibited the viability of chondrocytes, whereas the conditioned medium of Quercetin-treated BMSCs (BMSCsQUE-CM) reversed this phenomenon through exosomes. IL-1β notably upregulated MMP13 and ADAMT5 and reduced the expression of COL2A1 in chondrocytes, which were rescued by BMSCsQUE-CM. The effects of BMSCsQUE-CM on these three proteins were reversed in the absence of exosomes. Exosomes can be transferred from BMSCs to chondrocytes, and exosomes derived from Quercetin-treated BMSCs (BMSCsQue-Exo) can reverse the apoptotic effects of IL-1β on chondrocytes. The level of miR-124-3p in BMSCs was significantly upregulated by quercetin, and miR-124-3p was enriched in BMSCsQue-Exo. TRAF6 was identified as a direct target of miR-124-3p, and BMSCsQue-Exo abolished the IL-1β-induced activation of MAPK/p38 and NF-κB signaling. Furthermore, BMSCsQue-Exo significantly attenuated OA progression in vivo. Exosomes derived from Quercetin-treated BMSCs inhibited OA progression through the upregulation of miR-124-3p.
Collapse
Affiliation(s)
- Shiyu Dong
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Genrong Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaoliang Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Shengjun Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jing Bai
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiyang Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Liming Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
19
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Li Z, Bi R, Zhu S. The Dual Role of Small Extracellular Vesicles in Joint Osteoarthritis: Their Global and Non-Coding Regulatory RNA Molecule-Based Pathogenic and Therapeutic Effects. Biomolecules 2023; 13:1606. [PMID: 38002288 PMCID: PMC10669328 DOI: 10.3390/biom13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
OA is the most common joint disease that affects approximately 7% of the global population. Current treatment methods mainly relieve its symptoms with limited repairing effect on joint destructions, which ultimately contributes to the high morbidity rate of OA. Stem cell treatment is a potential regenerative medical therapy for joint repair in OA, but the uncertainty in differentiation direction and immunogenicity limits its clinical usage. Small extracellular vesicles (sEVs), the by-products secreted by stem cells, show similar efficacy levels but have safer regenerative repair effect without potential adverse outcomes, and have recently drawn attention from the broader research community. A series of research works and reviews have been performed in the last decade, providing references for the application of various exogenous therapeutic sEVs for treating OA. However, the clinical potential of target intervention involving endogenous pathogenic sEVs in the treatment of OA is still under-explored and under-discussed. In this review, and for the first time, we emphasize the dual role of sEVs in OA and explain the effects of sEVs on various joint tissues from both the pathogenic and therapeutic aspects. Our aim is to provide a reference for future research in the field.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Huang S, Liu Y, Wang C, Xiang W, Wang N, Peng L, Jiang X, Zhang X, Fu Z. Strategies for Cartilage Repair in Osteoarthritis Based on Diverse Mesenchymal Stem Cells-Derived Extracellular Vesicles. Orthop Surg 2023; 15:2749-2765. [PMID: 37620876 PMCID: PMC10622303 DOI: 10.1111/os.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis (OA) causes disability and significant economic and social burden. Cartilage injury is one of the main pathological features of OA, and is often manifested by excessive chondrocyte death, inflammatory response, abnormal bone metabolism, imbalance of extracellular matrix (ECM) metabolism, and abnormal vascular or nerve growth. Regrettably, due to the avascular nature of cartilage, its capacity to repair is notably limited. Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) play a pivotal role in intercellular communication, presenting promising potential not only as early diagnostic biomarkers in OA but also as efficacious therapeutic strategy. MSCs-EVs were confirmed to play a therapeutic role in the pathological process of cartilage injury mentioned above. This paper comprehensively provides the functions and mechanisms of MSCs-EVs in cartilage repair.
Collapse
Affiliation(s)
- Shanjun Huang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Yujiao Liu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Chenglong Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Wei Xiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Nianwu Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Peng
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xuanang Jiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaomin Zhang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Zhijiang Fu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
24
|
Liu J, Sun Z, You Y, Zhang L, Hou D, Gu G, Chen Y, Jiao G. M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and osteoporosis. Aging (Albany NY) 2023; 15:9499-9520. [PMID: 37751585 PMCID: PMC10564417 DOI: 10.18632/aging.205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND An imbalance between osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMMSCs) can cause osteoporosis. Macrophage-derived exosomes (MD-Exos) and microRNAs (miRNAs) enriched in exosomes participate in the differentiation of BMMSCs. METHODS Bioinformatics methods were used to analyze differentially expressed miRNAs. We cocultured M2 macrophages and BMMSCs to examine the biological function of exosomal microRNA-486-5p (miR-486-5p) on BMMSCs differentiation. Gain-of-function experiments related to osteogenesis were designed to investigate the effects of exosomes carrying miR-486-5p on an ovariectomized (OVX) mice model and the direct impact of miR-486-5p on BMMSCs. A dual luciferase experiment was performed to demonstrate the target gene of miR-486-5p. RESULTS Bioinformatics analysis identified high expression of miRNA-486 in M2 macrophage-derived exosomes (M2D-Exos). The in vitro results demonstrated that M2 macrophage-derived exosomal miR-486-5p enhanced osteogenic capacity but inhibited the adipogenesis of BMMSCs. The direct effect of miR-486-5p on BMMSCs showed the same effects. Animal experiments revealed that exosomal miR-486-5p rescued bone loss of OVX mice. SMAD2 was characterized as a target gene of miR-486-5p. Pathway analysis showed that M2 macrophage-derived exosomal miR-486-5p stimulated osteogenic differentiation via the TGF-β/SMAD2 signalling pathway. CONCLUSIONS Taken together, M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of BMMSCs through the miR-486-5p/SMAD2/TGF-β signalling pathway and osteoporosis.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunhao You
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dehui Hou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guanghui Gu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
27
|
Liu R, Wu S, Liu W, Wang L, Dong M, Niu W. microRNAs delivered by small extracellular vesicles in MSCs as an emerging tool for bone regeneration. Front Bioeng Biotechnol 2023; 11:1249860. [PMID: 37720323 PMCID: PMC10501734 DOI: 10.3389/fbioe.2023.1249860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Bone regeneration is a dynamic process that involves angiogenesis and the balance of osteogenesis and osteoclastogenesis. In bone tissue engineering, the transplantation of mesenchymal stem cells (MSCs) is a promising approach to restore bone homeostasis. MSCs, particularly their small extracellular vesicles (sEVs), exert therapeutic effects due to their paracrine capability. Increasing evidence indicates that microRNAs (miRNAs) delivered by sEVs from MSCs (MSCs-sEVs) can alter gene expression in recipient cells and enhance bone regeneration. As an ideal delivery vehicle of miRNAs, MSCs-sEVs combine the high bioavailability and stability of sEVs with osteogenic ability of miRNAs, which can effectively overcome the challenge of low delivery efficiency in miRNA therapy. In this review, we focus on the recent advancements in the use of miRNAs delivered by MSCs-sEVs for bone regeneration and disorders. Additionally, we summarize the changes in miRNA expression in osteogenic-related MSCs-sEVs under different microenvironments.
Collapse
Affiliation(s)
| | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Cai Z, Liu F, Li Y, Bai L, Feng M, Li S, Ma W, Shi S. Functional micro-RNA drugs acting as a fate manipulator in the regulation of osteoblastic death. NANOSCALE 2023; 15:12840-12852. [PMID: 37482769 DOI: 10.1039/d3nr02318d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Bone loss is prevalent in clinical pathological phenomena such as osteoporosis, which is characterized by decreased osteoblast function and number, increased osteoclast activity, and imbalanced bone homeostasis. However, current treatment strategies for bone diseases are limited. Regulated cell death (RCD) is a programmed cell death pattern activated by the expression of specific genes in response to environmental changes. Various studies have shown that RCD is closely associated with bone diseases, and manipulating the death fate of osteoblasts could contribute to effective bone treatment. Recently, microRNA-targeting therapy drugs have emerged as a potential solution because of their precise targeting, powerful curative effect, and limited side effects. Nevertheless, their clinical application is limited by their inherent instability, easy enzymatic degradation, and poor membrane penetrability. To address this challenge, a self-assembling tetrahedral DNA nanostructure (TDN)-based microRNA (Tmi) delivery system has been proposed. TDN features excellent biocompatibility, cell membrane penetrability, serum stability, and modification versatility, making it an ideal nucleic acid carrier for miRNA protection and intracellular transport. Once inside cells, Tmi can dissociate and release miRNAs to manipulate key molecules in the RCD signaling pathway, thereby regulating bone homeostasis and curing diseases caused by abnormal RCD activation. In this paper, we discuss the impact of the miRNA network on the initiation and termination of four critical RCD programs in bone tissues: apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we present the Tmi delivery system as a miRNA drug vector. This provides insight into the clinical translation of miRNA nucleic acid drugs and the application of miRNA drugs in bone diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Long Bai
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maogeng Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Xu C, Wang Z, Liu Y, Wei B, Liu X, Duan K, Zhou P, Xie Z, Wu M, Guan J. Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Cell Biol Toxicol 2023; 39:1257-1274. [PMID: 36112264 PMCID: PMC10425527 DOI: 10.1007/s10565-022-09744-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/β-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/β-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/β-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/β-catenin pathway by downregulating MMP14.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Zhaodong Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Yajun Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Bangguo Wei
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Xiangyu Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Keyou Duan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Pinghui Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
| | - Zhao Xie
- Third Military Medical University of Chinese PLA, Chongqing, 400038, People's Republic of China
| | - Min Wu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
| | - Jianzhong Guan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China.
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
30
|
Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: A narrative review. Heliyon 2023; 9:e18120. [PMID: 37496898 PMCID: PMC10366432 DOI: 10.1016/j.heliyon.2023.e18120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
| |
Collapse
|
31
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
32
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
33
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR. Mechanisms of analgesic effect of mesenchymal stem cells in osteoarthritis pain. World J Stem Cells 2023; 15:196-208. [PMID: 37181003 PMCID: PMC10173815 DOI: 10.4252/wjsc.v15.i4.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, and it is a major cause of pain, disability and health burden. Pain is the most common and bothersome presentation of OA, but its treatment is still suboptimal, due to the short-term action of employed analgesics and their poor adverse effect profile. Due to their regenerative and anti-inflammatory properties, mesenchymal stem cells (MSCs) have been extensively investigated as a potential therapy for OA, and numerous preclinical and clinical studies found a significant improvement in joint pathology and function, pain scores and/or quality of life after administration of MSCs. Only a limited number of studies, however, addressed pain control as the primary end-point or investigated the potential mechanisms of analgesia induced by MSCs. In this paper, we review the evidence reported in literature that support the analgesic action of MSCs in OA, and we summarize the potential mechanisms of these antinociceptive effects.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
34
|
Exosomes treating osteoarthritis: hope with challenge. Heliyon 2023; 9:e13152. [PMID: 36711315 PMCID: PMC9880404 DOI: 10.1016/j.heliyon.2023.e13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis (OA) has been proven as the second primary cause of pain and disability in the elderly population, impact patients both physically and mentally, as well as imposing a heavy burden on the global healthcare system. Current treatment methods, whether conservative or surgical, that aim at relieving symptoms can not delay or reverse the degenerative process in the structure. Scientists and clinicians are facing a revolution in OA treatment strategies. The emergence of exosomes brings hope for OA treatment based on pathology, which is attributed to its full potential in protecting chondrocytes from excessive death, alleviating inflammation, maintaining cartilage matrix metabolism, and regulating angiogenesis and subchondral bone remodeling. Therefore, we summarized the recent studies of exosomes in OA, aiming to comprehensively understand the functions and mechanisms of exosomes in OA treatment, which may provide direction and theoretical support for formulating therapeutic strategies in the future.
Collapse
|
35
|
Li J, Tan J, Song Q, Yang X, Zhang X, Qin H, Huang G, Su X, Li J. Exosomal miR-767 from senescent endothelial-derived accelerating skin fibroblasts aging via inhibiting TAB1. J Mol Histol 2023; 54:13-24. [PMID: 36409439 PMCID: PMC9908644 DOI: 10.1007/s10735-022-10107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
Abstract
Skin aging is a complicated physiological process, and microRNA-mediated regulation has been shown to contribute to this process. Exosomes mediate intercellular communication through miRNAs, mRNAs and proteins, and participate in many physiological and pathological processes. Vascular endothelial cell-derived exosomes have been confirmed to be involved in the development of many diseases, however, their effects on skin aging have not been reported. In this study, senescent endothelial cells could regulate skin fibroblast functions and promote cell senescence through exosomal pathway. miR-767 was highly expressed in senescent vascular endothelial cells and their exosomes, and miR-767 is also upregulated in skin fibroblasts after treatment with exosomes derived from senescent vascular endothelial cells. In addition, transfection with miR-767 mimic promoted senescence of skin fibroblasts, while transfection with miR-767 inhibitor reversed the effect of D-galactose. Double luciferase analysis confirmed that TAB1 was a direct target gene of miR-767. Furthermore, miR-767 expression was increased and TAB1 expression was decreased in D-galactose induced aging mice. In mice that overexpressed miR-767, HE staining showed thinning of dermis and senescence appearance. In conclusion, senescent vascular endothelial cell-derived exosome mediated miR-767 regulates skin fibroblasts through the exosome pathway. Our study reveals the role of vascular endothelial cell-derived exosomes in aging in the skin microenvironment and contributes to the discovery of new targets for delaying senescence.
Collapse
Affiliation(s)
- Jing Li
- grid.256607.00000 0004 1798 2653Department of Physiology, Guangxi Medical University, Nanning, 530000 Guangxi China
| | - Jiyong Tan
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, 530000 Guangxi China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, 530000 Guangxi China
| | - Xinni Yang
- grid.256607.00000 0004 1798 2653Department of Physiology, Guangxi Medical University, Nanning, 530000 Guangxi China
| | - Xin Zhang
- grid.256607.00000 0004 1798 2653Department of Physiology, Guangxi Medical University, Nanning, 530000 Guangxi China
| | - Hao Qin
- grid.459593.7Guigang City People′s Hospital, Guigang, 537000 Guangxi China
| | - Gaoxiang Huang
- grid.256607.00000 0004 1798 2653Department of Physiology, Guangxi Medical University, Nanning, 530000 Guangxi China
| | - Xiaoxue Su
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, 530000 Guangxi China
| | - Jing Li
- grid.256607.00000 0004 1798 2653Department of Physiology, Guangxi Medical University, Nanning, 530000 Guangxi China ,Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, 530000 Guangxi China
| |
Collapse
|
36
|
Breulmann FL, Hatt LP, Schmitz B, Wehrle E, Richards RG, Della Bella E, Stoddart MJ. Prognostic and therapeutic potential of microRNAs for fracture healing processes and non-union fractures: A systematic review. Clin Transl Med 2023; 13:e1161. [PMID: 36629031 PMCID: PMC9832434 DOI: 10.1002/ctm2.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing. AIMS AND METHODS This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach. A systematic literature search was performed with the keywords 'miRNA and fracture healing' and 'miRNA and non-union fracture'. Any original article investigating miRNAs in fracture healing or non-union fractures was screened. Eventually, 82 studies were included in the qualitative analysis for 'miRNA and fracture healing', while 19 were selected for the 'miRNA and fracture non-union' category. RESULTS AND CONCLUSIONS Out of 151 miRNAs, miR-21, miR-140 and miR-214 were the most investigated miRNAs in fracture healing in general. miR-31-5p, miR-221 and miR-451-5p were identified to be regulated specifically in non-union fractures. Large heterogeneity was detected between studies investigating the role of miRNAs in fracture healing or non-union in terms of patient population, sample types and models used. Nonetheless, our approach identified some miRNAs with the potential to serve as biomarkers for non-union fractures, including miR-31-5p, miR-221 and miR-451-5p. We provide a discussion of involved pathways and suggest on alignment of future research in the field.
Collapse
Affiliation(s)
- Franziska Lioba Breulmann
- AO Research Institute DavosDavos PlatzSwitzerland
- Department of Orthopedic Sports MedicineKlinikum Rechts der IsarTechnical University of MunichMunichGermany
| | - Luan Phelipe Hatt
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Boris Schmitz
- Department of Rehabilitation SciencesFaculty of HealthUniversity of Witten/HerdeckeWittenGermany
- DRV Clinic KönigsfeldCenter for Medical RehabilitationEnnepetalGermany
| | - Esther Wehrle
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Robert Geoff Richards
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | | | - Martin James Stoddart
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| |
Collapse
|
37
|
Huang G, Zhao Q, Li W, Jiao J, Zhao X, Feng D, Tang W. Exosomes: A new option for osteoporosis treatment. Medicine (Baltimore) 2022; 101:e32402. [PMID: 36595975 PMCID: PMC9803424 DOI: 10.1097/md.0000000000032402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by reduced bone mass and destruction of bone microarchitecture, leading to increased bone fragility and susceptibility to fracture. However, the pathogenesis and molecular mechanisms of this disease remain unclear. Extracellular vesicles, structures originating from the plasma membrane and ranging from 30 nm to 5 µm in diameter, play an important role in intercellular communication in the bone microenvironment. Exosomes are extracellular vesicles that deliver cargo molecules, including endogenous proteins, lipids and nucleic acids. These cargo molecules are encapsulated in a lipid bilayer and internalized by target cells through receptor-ligand interactions or lipid membrane fusion. With the advancement of exosome research, exosome therapy for osteoporosis is fast becoming a research hotspot for researchers. This review aims to discuss the role of exosomes in the pathogenesis of osteoporosis. In addition, emerging diagnostic and therapeutic properties of exosomes are described to highlight the potential role of exosomes in osteoporosis.
Collapse
Affiliation(s)
- Guijiang Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Qianhao Zhao
- Kunming Children’s Hospital, Kunming City, China
| | - Wenhu Li
- Kunming Medical University, Kunming City, China
| | | | - Xin Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Dan Feng
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Wei Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
- *Correspondence: Wei Tang, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China (e-mail: )
| |
Collapse
|
38
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
39
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
40
|
Zhuang J, Hang R, Sun R, Ding Y, Yao X, Hang R, Sun H, Bai L. Multifunctional exosomes derived from bone marrow stem cells for fulfilled osseointegration. Front Chem 2022; 10:984131. [PMID: 36072705 PMCID: PMC9441814 DOI: 10.3389/fchem.2022.984131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have self-renewal, multi-directional differentiation potential, and immune regulation function and are widely used for de novo bone formation. However, the wide variation in individual amplification, the potential risk of cancer cell contamination, and the need for culture time significantly limit their widespread use clinically. Alternatively, numerous studies have shown that exosomes secreted by BMSCs in the nanoscale can also affect the functionality of endothelial cells (angiogenesis), macrophages (immunomodulation), and osteoblasts/osteoclasts (osteogenesis), which is a highly promising therapy for osseointegration with pronounced advantages (e.g., safety, high efficiency, and no ethical restrictions). The review aims to summarize the multifaceted effect of BMSCs-derived exosomes on osseointegration and provide reference and basis for rapid and qualified osseointegration.
Collapse
Affiliation(s)
- Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,*Correspondence: Hui Sun, ; Long Bai,
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, China,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China,*Correspondence: Hui Sun, ; Long Bai,
| |
Collapse
|
41
|
Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14:40. [PMID: 35927232 PMCID: PMC9352673 DOI: 10.1038/s41368-022-00187-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Differential expression profile of plasma exosomal microRNAs in acute type A aortic dissection with acute lung injury. Sci Rep 2022; 12:11667. [PMID: 35804020 PMCID: PMC9270349 DOI: 10.1038/s41598-022-15859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) packaged into exosomes mediate cell communication and contribute to the pathogenesis of acute type A aortic dissection (ATAAD) with acute lung injury (ALI). The expression profile of plasma exosomal miRNAs in ATAAD patients with ALI hasn’t been identified. We performed a miRNA-sequencing to analyze the differentially expressed miRNAs (DE-miRNAs) of circulating exosomes in ATAAD patients with ALI compared to patients without ALI, founding 283 specific miRNAs in two groups. We respectively selected the top 10 downregulated and upregulated DE-miRNAs for further studies. The predicted transcription factors (TFs) of these DE-miRNAs were SMAD2, SRSF1, USF1, etc. The Gene Ontology (GO) and Kyoto Encyclopedia Genes and Genomes (KEGG) analysis predicted their target genes mainly involved acute inflammatory response, cell junction, cytoskeleton, NF-κB signaling pathway, etc. Construction and analysis of the PPI network revealed that RHOA and INSR were considered hub genes with the highest connectivity degrees. Moreover, we confirmed two exosomal miRNAs (hsa-miR-485-5p and hsa-miR-206) by real-time quantitative polymerase chain reaction (RT-qPCR) in a validation cohort. Our study identified a plasma exosomal miRNAs signature related to ATAAD with ALI. Certain DE-miRNAs may contribute to the progression of this disease, which help us better understand the pathogenesis of ATAAD with ALI.
Collapse
|
43
|
Lee S, Ko JH, Kim SN. The Extracellular MicroRNAs on Inflammation: A Literature Review of Rodent Studies. Biomedicines 2022; 10:1601. [PMID: 35884901 PMCID: PMC9312877 DOI: 10.3390/biomedicines10071601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an indispensable biological process stimulated by infection and injuries. Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane structures carrying various molecules, were summarized in this review. Emerging evidence from animal studies has highlighted the role of EVs in modulating inflammatory responses, by transporting various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases, published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of 95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases, including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.
Collapse
Affiliation(s)
- Seri Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
- Graduate School, Dongguk University, Seoul 04620, Korea
| | - Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| |
Collapse
|
44
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Meng F, Xue X, Yin Z, Gao F, Wang X, Geng Z. Research Progress of Exosomes in Bone Diseases: Mechanism, Diagnosis and Therapy. Front Bioeng Biotechnol 2022; 10:866627. [PMID: 35497358 PMCID: PMC9039039 DOI: 10.3389/fbioe.2022.866627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the global escalation of the aging process, the number of patients with bone diseases is increasing year by year. Currently, there are limited effective treatments for bone diseases. Exosome, as a vital medium in cell-cell communication, can mediate tissue metabolism through the paracrine transmission of various cargos (proteins, nucleic acids, lipids, etc.) carried by itself. Recently, an increasing number of researchers have proven that exosomes play essential roles in the formation, metabolism, and pathological changes of bone and cartilage. Because exosomes have the advantages of small size, rich sources, and low immunogenicity, they can be used not only as substitutes for the traditional treatment of bone diseases, but also as biomarkers for the diagnosis of bone diseases. This paper reviews the research progress of several kinds of cells derived-exosomes in bone diseases and provides a theoretical basis for further research and clinical application of exosomes in bone diseases in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Fei Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| |
Collapse
|
46
|
Wang Q, Gao Z, Guo K, Lu J, Wang F, Wu T, Huang Y, Wu D. Human Umbilical Cord Wharton Jelly Cells Treatment Prevents Osteoporosis Induced by D-Galactose. Int J Clin Pract 2022; 2022:4593443. [PMID: 35936064 PMCID: PMC9328953 DOI: 10.1155/2022/4593443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
METHODS Sixteen male mice were randomly divided into 4 groups: control (ordinary feeding), D-gal (D-galactose) group, D-gal + MSC (human umbilical cord Wharton jelly cells), and D-gal + MSC-TNFα groups. Except for the control group (fed with same amount of saline solution), other mice received gastric feeding of 250 mg/kg D-galactose every day for 8 weeks. TNFα (10 ng/mL for 24 h) cocultured or noncocultured HUCWJCs (5 × 105) were suspended in 0.1 ml of sterile PBS and injected into tail veins every other week in D-gal + MSC-TNFα and D-gal + MSC groups, respectively, and only 0.1 ml of sterile PBS for control and D-gal groups. The bone mass was detected by qPCR, ELISA, microcomputed tomography (μCT), and hematoxylin-eosin staining. Proliferation, apoptosis, and differentiation of periosteal-derived osteoblasts (POB) were assessed. Transwell assay and scratch healing were performed to detect POB migration and invasion ability. The effect of HUCWJCs on POB signaling pathway expression was evaluated by immunoblotting. RESULTS The malondialdehyde (MDA) in serum was higher and superoxide dismutase (SOD) was lower in the D-gal group compared to the other groups (p < 0.05). Mice in D-gal group showed significantly decreased bone mass when compared to the control group, while HUCWJCs treatment partially rescued the phenotype, as demonstrated by μCT and histology (p < 0.05). Mechanically, HUCWJCs treatment partially promoted proliferation and migration and decreased apoptosis of POB induced by oxidative stress via activating the mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSION HUCWJCs can prevent the progression of osteoporosis by inhibiting oxidative stress, which may act by regulating osteoblasts fate through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| |
Collapse
|
47
|
Huang Y, Zhang X, Zhan J, Yan Z, Chen D, Xue X, Pan X. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. J Cell Mol Med 2021; 25:7734-7745. [PMID: 34160894 PMCID: PMC8358849 DOI: 10.1111/jcmm.16654] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) serve as gene silencers involved in essential cell functions. The role of miR‐206 and E74‐like factor 3 (Elf3) has been identified in osteoarthritis (OA), while the effect of exosomal miR‐206 from bone marrow mesenchymal stem cells (BMSCs) in OA remains largely unknown. Thus, we aim to explore the role of exosomal miR‐206 from BMSCs in OA with the involvement of Elf3. BMSCs and BMSC‐derived exosomes (BMSC‐exos) were obtained and identified. OA mouse models were constructed by anterior cruciate ligament transection and then treated with BMSC‐exos or BMSC‐exos containing miR‐206 mimic/inhibitor. The expression of miR‐206, Elf3, inflammatory factors, osteocalcin (OCN) and bone morphogenetic protein 2 (BMP2) in mouse femoral tissues was assessed. The pathological changes in mouse femur tissues were observed. The mouse osteoblasts were identified and treated with untransfected or transfected BMSC‐exos, and then, the expression of miR‐206, Elf3, OCN and BMP2 was determined. The alkaline phosphatase (ALP) activity, calcium deposition level, OCN secretion, proliferation, apoptosis and cell cycle arrest in osteoblasts were measured. MiR‐206 was down‐regulated while Elf3 was up‐regulated in OA animal and cellular models. Exosomal miR‐206 ameliorated inflammation and increased expression of OCN and BMP2 in mouse femoral tissues. Moreover, exosomal miR‐206 promoted ALP activity, calcium deposition level, OCN secretion and proliferation and inhibited apoptosis in OA osteoblasts. Overexpressed Elf3 reversed miR‐206 up‐regulation‐induced effects on OA osteoblasts. BMSC‐derived exosomal miR‐206 promotes proliferation and differentiation of osteoblasts in OA by reducing Elf3. Our research may provide novel targets for OA treatment.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiumeng Zhang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zijiang Yan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Daosen Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|