1
|
Zhang K, Yan Y, Zhao R, Song X, Du L, Zhang B, Yang C, Tang X. Effects of Substitution of Wheat Straw by Giant Reed on Growth Performance, Serum Biochemical Parameters, Nutrient Digestibility, and Antioxidant Properties of Sheep. Animals (Basel) 2024; 14:3678. [PMID: 39765583 PMCID: PMC11672672 DOI: 10.3390/ani14243678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The development and utilization of unconventional forage resources is crucial to alleviating the current situation of shortage of forage resources. Giant reed (Arundo donax) is a promising forage resource from the Poaceae family, one of the largest herbaceous plants globally, with fast growth, high biomass yield, and strong ecological adaptability. However, there are still very few reports on the use of giant reed in livestock and poultry production. The purpose of this study was to evaluate the effects of adding giant reed instead of wheat straw in total mixed ration (TMR) diets on growth performance, blood biochemical indexes, nutrient digestibility, and antioxidant properties of sheep, thereby providing a theoretical basis for the development and utilization of giant reed herbage resources. A total of 24 fattening sheep (Han × Duper) with similar body weight (20 kg), age (2 months), and health status were randomly divided into four groups with six replicates per group. Sheep in the control group were fed a basal diet (CON), and those in the experimental groups were fed giant reed Lvzhou No. 1 instead of wheat straw, with replacement proportions of 10% (GR10), 20% (GR20), and 30% (GR30) of the total diet, respectively. The results showed that (1) the body weight (FBW) and average daily gain (ADG) of sheep in the GR20 and GR30 groups were higher than those of sheep in the CON and GR10 groups (p < 0.05). Meanwhile, the feed to gain ratio (F/G) of sheep in the GR20 and GR30 groups was lower than those sheep in the CON and GR10 groups (p < 0.05), and the F/G of the GR30 group was lower than that of the GR20 group (p < 0.05). (2) The apparent digestibility of DM and CP in groups GR10, GR20 and GR30 was significantly higher than that in group CON (p < 0.005). The digestibility of NDF and ADF in groups GR20, and GR30 was significantly higher than that in the CON and GR10 groups (p < 0.05). (3) dietary substitution of giant reed for wheat straw had no effect on serum biochemical indices, except serum glucose (GLU, p = 0.014) of sheep. In addition, the substitution of giant reed for wheat straw had a tendency to decrease serum urea content of sheep (p = 0.098). (4) Dietary substitution of giant reed for wheat straw significantly improved serum T-SOD (p < 0.001) and T-AOC (p < 0.001), and significantly decreased MDA (p < 0.001) of sheep. In conclusion, replacing wheat straw with giant reed can significantly enhance growth performance, nutrient digestibility, and antioxidant capacity in sheep without adverse effects on their normal physiological functions.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Yibo Yan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Rui Zhao
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Xianyi Song
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Liying Du
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Bochi Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Chunlei Yang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Manrique-Castano D, Bhaskar D, ElAli A. Dissecting glial scar formation by spatial point pattern and topological data analysis. Sci Rep 2024; 14:19035. [PMID: 39152163 PMCID: PMC11329771 DOI: 10.1038/s41598-024-69426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.
Collapse
Affiliation(s)
- Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | | | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Ma H, Wang C, Han L, Kong F, Liu Z, Zhang B, Chu W, Wang H, Wang L, Li Q, Peng W, Yang H, Han C, Lu X. Tofacitinib Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglial Polarization via JAK/STAT Signaling Pathway. Int J Biol Sci 2023; 19:4865-4882. [PMID: 37781508 PMCID: PMC10539697 DOI: 10.7150/ijbs.84564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Background: The JAK/STAT signaling pathway is the main inflammatory signal transduction pathway, whether JAK/STAT contributes the pathology of SCI and targeting the pathway will alleviate SCI needs to be addressed. Here, we explored the therapeutic effect of pan-JAK inhibitor tofacitinib (TOF) on secondary injury after SCI and explained the underlying mechanisms. Methods: SCI model in rat was established to evaluate the therapeutic effects of TOF treatment in vivo. Histological and behavioral analyses were performed at different time points after SCI. In vitro, the effects of TOF on pro-inflammatory activation of primary microglia and BV2 cells were analyzed by western blot analysis, fluorescent staining, qPCR and flow cytometry. The neuroprotection of TOF was detected using a co-culture system with primary neurons and microglia. Results: TOF can effectively improve motor dysfunction caused by spinal cord injury in rats. TOF administration in the early stage of inflammation can effectively inhibit neuronal apoptosis and scar tissue formation, and promote the repair of axons and nerve fibers. Further studies have demonstrated that TOF suppresses inflammation caused by spinal cord injury by inhibiting the activation of microglia to pro-inflammatory phenotype in vivo and in vitro. Additionally, an interesting phenomenon is revealed in our results that TOF exhibits superior neuronal protection during inflammation in vitro. Conclusions: Our study showed that TOF could regulate microglial activation via JAK / STAT pathway and promote the recovery of motor function after SCI, which is of great significance for the immunotherapy of SCI.
Collapse
Affiliation(s)
- Hongdao Ma
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Chenfeng Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Lin Han
- Department of Orthopaedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Fanqi Kong
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Zhixiao Liu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Bangke Zhang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Wenxiang Chu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Liang Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Qisheng Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Weilin Peng
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Chaofeng Han
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
4
|
Zhang J, Jia Q, Li N, Gu L, Dan W, Dai J. Recent Developments of Gramine: Chemistry and Biological Activity. Molecules 2023; 28:5695. [PMID: 37570664 PMCID: PMC10419902 DOI: 10.3390/molecules28155695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The natural alkaloid gramine has attracted significant attention in both academic and industrial circles because of its potential and diverse biological activities, including antiviral, antibacterial, antifungal, anti-inflammatory and antitumor activities; application in therapy for Alzheimer's disease; serotonin-receptor-related activity; insecticidal activity; and application as an algicide. In this review, we focus on the research advances that have been made for gramine-based molecules since their discovery, providing key information on their extraction and separation, chemical synthesis and diverse biological activities. Data regarding their mechanisms of action are also presented. This comprehensive and critical review will serve as a guide for developing more drug candidates based on gramine skeletons.
Collapse
Affiliation(s)
- Jiaoyue Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Qitao Jia
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Liqiang Gu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| |
Collapse
|
5
|
Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, Nie J, Zhong N, Zhu G, Liu J, Liu Z. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther 2023; 29:1094-1108. [PMID: 36627822 PMCID: PMC10018110 DOI: 10.1111/cns.14085] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI. METHODS Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin. RESULTS Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function. CONCLUSION Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zihao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anan Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nanshan Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoqing Zhu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Sesamol Attenuates Neuroinflammation by Regulating the AMPK/SIRT1/NF- κB Signaling Pathway after Spinal Cord Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8010670. [PMID: 35035666 PMCID: PMC8758308 DOI: 10.1155/2022/8010670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is one of the crucial mechanisms mediating spinal cord injury (SCI) progress. Sesamol, a component of sesame oil, has anti-inflammatory activity, but its mechanism in SCI remains unclear. We investigated if the AMPK/SIRT1/NF-κB pathway participated in anti-inflammation of sesamol in SCI. Sesamol could inhibit neuronal apoptosis, reduce neuroinflammation, enhance M2 phenotype microglial polarization, and improved motor function recovery in mice after SCI. Furthermore, sesamol increased SIRT1 protein expression and p-AMPK/AMPK ratio, while it downregulated the p-p65/p65 ratio, indicating that sesamol treatment upregulated the AMPK/SIRT1 pathway and inhibited NF-κB activation. However, these effects were blocked by compound C which is a specific AMPK inhibitor. Together, the study suggests that sesamol is a potential drug for antineuroinflammation and improving locomotor functional recovery through regulation of the AMPK/SIRT1/NF-κB pathway in SCI.
Collapse
|