1
|
Liao M, Zou S, Wu J, Bai J, Liu Y, Zhi K, Qu L. METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol Cell Biochem 2024; 479:3471-3487. [PMID: 38383916 DOI: 10.1007/s11010-024-04930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Ferroptosis of vascular smooth muscle cells (VSMCs) is related to the incidence of aortic dissection (AD). Long non-coding RNA (lncRNA) NORAD plays a crucial role in the progression of various diseases. The present study aimed to investigate the effects of NORAD on the ferroptosis of VSMCs and the molecular mechanisms. The expression of NORAD, HUR, and GPX4 was detected using quantitative real-time PCR (qPCR) or western blot. Ferroptosis was evaluated by detecting lactate dehydrogenase (LDH) activity, lipid reactive oxygen species (ROS), malonaldehyde (MDA) content, L-Glutathione (GSH) level, Fe2+ content, and ferroptosis-related protein levels. The molecular mechanism was assessed using RNA pull-down, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assay. The histology of aortic tissues was assessed using H&E, elastic Verhoeff-Van Gieson (EVG), and Masson staining assays. The data indicated that NORAD was downregulated in patients with AD and AngII-treated VSMCs. Overexpression of NORAD promoted VSMC growth and inhibited the ferroptosis induced by AngII. Mechanistically, NORAD interacted with HUR, which promoted GPX4 mRNA stability and elevated GPX4 levels. Knockdown of GPX4 abrogated the effects of NORAD on cell growth and ferroptosis of AngII-treated VSMCs. Moreover, METTL3 promoted m6A methylation of NORAD in an YTHDF2-dependent manner. In addition, NORAD attenuated AAD symptoms, incidence, histopathology, inflammation, and ferroptosis in AAD mice. In conclusion, METTL3-mediated NORAD inhibited ferroptosis of VSMCs via the HUR/GPX4 axis and decelerated AAD progression, suggesting that NORAD may be an AD therapeutic target.
Collapse
Affiliation(s)
- Mingfang Liao
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Sili Zou
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jianjin Wu
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jun Bai
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Yandong Liu
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Lefeng Qu
- Department of Vascular & Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
2
|
Lv M, Zheng Y, Dai X, Zhao J, Hu G, Ren M, Shen Z, Su Z, Wu C, Liu HK, Xue X, Mao ZW. Ruthenium(ii)-Arene Complex Triggers Immunogenic Ferroptosis for Reversing Drug Resistance. J Med Chem 2024; 67:20156-20171. [PMID: 39312756 DOI: 10.1021/acs.jmedchem.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemoresistance remains an arduous challenge in oncology, but ferroptosis shows potential for overcoming it by stimulating the immune system. Herein, a novel high-performance ruthenium(II)-based arene complex [Ru(η6-p-cym)(BTBpy)Cl] (RuBTB) is developed for ferroptosis-enhanced antitumor immunity and drug resistance reversal via glutathione (GSH) metabolism imbalance. RuBTB shows significantly enhanced antiproliferation activity against cisplatin (CDDP)-resistant lung cancer cells (A549R), with 26.35-fold better anticancer effects than CDDP. Immunogenic ferroptosis is induced by GSH depletion/glutathione peroxidase 4 (GPX4) inactivation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in RuBTB-treated cells. Mechanism studies indicate that RuBTB regulates ferroptosis and immune-related pathways, coordinating with GSH metabolism-mediated glutathione S-transferase (GST) inhibition to reverse drug resistance in platinum-combined therapy. Tumor vaccination experiments demonstrate the intensified antitumor effects endowed by highly immunogenic ferroptosis in vivo. This study provides the first example of a metal-arene complex for achieving satisfactory ferroptosis therapeutic effects with efficient immunogenicity to overcome drug resistance in metal-based immunochemotherapy.
Collapse
Affiliation(s)
- Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| | - Xiangyu Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingyue Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Guojing Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Meng Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhengqi Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi Su
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chao Wu
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hong-Ke Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuling Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| |
Collapse
|
3
|
Wang R, Zhang X, Ye H, Yang X, Zhao Y, Wu L, Liu H, Wen Y, Wang J, Wang Y, Yu M, Ma C, Wang L. Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway. Cardiovasc Diabetol 2024; 23:394. [PMID: 39488694 PMCID: PMC11531115 DOI: 10.1186/s12933-024-02469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases. OBJECTIVE To confirm the significant role of ferroptosis in DCM and to investigate whether FGF21 improves DCM by inhibiting ferroptosis and elucidating its specific molecular mechanisms. METHODS The animal DCM models were established through high-fat feeding combined with streptozotocin injection in C57BL/6J mice or by db/db mice, and the diabetic cardiomyocyte injury model was created using high glucose and high fat (HG/HF) culture of primary cardiomyocytes. Intervention modeling of FGF21 were performed by injecting adeno-associated virus 9-FGF21 in mice and transfecting FGF21 siRNA or overexpression plasmid in primary cardiomyocytes. RESULTS The findings indicated that ferroptosis was exacerbated and played a significant role in DCM. The overexpression of FGF21 inhibited ferroptosis and improved cardiac injury and function, whereas the knockdown of FGF21 aggravated ferroptosis and cardiac injury and function in DCM. Furthermore, we discovered that FGF21 inhibited ferroptosis in DCM by directly acting on ferritin and prolonging its half-life. Specifically, FGF21 binded to the heavy and light chains of ferritin, thereby reducing its excessive degradation in the proteasome and lysosomal-autophagy pathways in DCM. Additionally, activating transcription factor 4 (ATF4) served as the upstream regulator of FGF21 in DCM. CONCLUSIONS The ATF4-FGF21-ferritin axis mediates the protective effects in DCM through the ferroptosis pathway and represents a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofang Zhang
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xian Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yongting Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yun Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Meixin Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Caixia Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Yang Z, Gao W, Yang K, Chen W, Chen Y. The protective role of RACK1 in hepatic ischemia‒reperfusion injury-induced ferroptosis. Inflamm Res 2024; 73:1961-1979. [PMID: 39292271 DOI: 10.1007/s00011-024-01944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1-93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181-317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.
Collapse
Affiliation(s)
- Zelong Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wenjie Gao
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Kai Yang
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Weigang Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Wu C, Bao S, Sun H, Chen X, Yang L, Li R, Peng Y. Noncoding RNAs regulating ferroptosis in cardiovascular diseases: novel roles and therapeutic strategies. Mol Cell Biochem 2024; 479:2827-2841. [PMID: 38064139 PMCID: PMC11473578 DOI: 10.1007/s11010-023-04895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 10/15/2024]
Abstract
The morbidity and mortality rates of cardiovascular diseases (CVDs) are increasing; thus, they impose substantial health and economic burdens worldwide, and effective interventions are needed for immediate resolution of this issue. Recent studies have suggested that noncoding RNAs (ncRNAs) play critical roles in the occurrence and development of CVDs and are potential therapeutic targets and novel biomarkers for these diseases. Newly discovered modes of cell death, including necroptosis, pyroptosis, apoptosis, autophagy-dependent cell death and ferroptosis, also play key roles in CVD progression. However, ferroptosis, which differs from the other aforementioned forms of regulated cell death in terms of cell morphology, biochemistry and inhereditability, is a unique iron-dependent mode of nonapoptotic cell death induced by abnormal iron metabolism and excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS). Increasing evidence has confirmed that ncRNA-mediated ferroptosis is involved in regulating tissue homeostasis and CVD-related pathophysiological conditions, such as cardiac ischemia/reperfusion (I/R) injury, myocardial infarction (MI), atrial fibrillation (AF), cardiomyopathy and heart failure (HF). In this review, we summarize the underlying mechanism of ferroptosis, discuss the pathophysiological effects of ncRNA-mediated ferroptosis in CVDs and provide ideas for effective therapeutic strategies.
Collapse
Affiliation(s)
- Changyong Wu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaocui Chen
- Department of Gastroenterology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Lu Yang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruijie Li
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yunzhu Peng
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Yang C, Guo W, He R, Meng X, Fu J, Lu Y. Dietary capsaicin attenuates cardiac injury after myocardial infarction in type 2 diabetic mice by inhibiting ferroptosis through activation of TRPV1 and Nrf2/HMOX1 pathway. Int Immunopharmacol 2024; 140:112852. [PMID: 39106715 DOI: 10.1016/j.intimp.2024.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a major 21st-century epidemic. T2DM elevates the risk of myocardial infarction and heart failure while also reducinges survival rates. Recently Ferroptosis has been found to be involved in the development of various cardiovascular diseases. TRPV1 is also a potential therapeutic target for cardioprotection. This study explores whether capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist, can prevent diabetic myocardial infarction-induced injury by inhibiting ferroptosis. METHODS T2DM model was induced by high-fat diet (HFD) feeding combined with streptozocin (STZ) injections, and the diabetic mice were treated with capsaicin(0.015 %) in their food. Myocardial infarction model was established as well. Mouse' general characteristics, cardiac function, and morphological histology were observed and analyzed. RNA-seq was used to investigate the possible mechanism of injury in AC16 cardiomyocytes cultured with high glucose and hypoxia. In addition, the potential mechanism of capsaicin against injury was further investigated in AC16 cardiomyocytes cultured with high glucose and hypoxia. RESULTS The RNA-seq analysis revealed that ferroptosis was associated with cell death induced by high-glucose in combination with hypoxia, and CAP treatment could effectively inhibit ferroptosis to enhance cell survival. In vivo studies demonstrated that CAP treatment significantly improved post-MI cardiac function, attenuated myocardial inflammation and fibrosis. Furthermore, it was observed that CAP reduced ferroptosis levels by activating TRPV1 in the heart, upregulating Nrf2 expression, promoting Nrf2 nuclear translocation and increasing the expression of the Nrf2 downstream molecule Heme oxygenase-1 (HMOX1). CONCLUSIONS Dietary capsaicin may inhibit cardiomyocyte ferroptosis through activation of myocardial TRPV1 and Nrf2/HMOX1 signaling pathway, which in turn exerts a protective effect on the myocardium after myocardial infarction in type 2 diabetic mice.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Wenli Guo
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Ruilin He
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Xudong Meng
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jiajing Fu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China; Ambulatory Surgery Center, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
7
|
Rai AK, Muthukumaran NS, Nisini N, Lee T, Kyriazis ID, de Lucia C, Piedepalumbo M, Roy R, Uchida S, Drosatos K, Bisserier M, Katare R, Goukassian D, Kishore R, Garikipati VNS. Transcriptome wide changes in long noncoding RNAs in diabetic ischemic heart disease. Cardiovasc Diabetol 2024; 23:365. [PMID: 39420368 PMCID: PMC11488282 DOI: 10.1186/s12933-024-02441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
More than 10% of adults in the United States have type 2 diabetes mellitus (DM) with a 2-4 times higher prevalence of ischemic heart disease than the non-diabetics. Despite extensive research approaches to limit this life-threatening condition have proven unsuccessful, highlighting the need for understanding underlying molecular mechanisms. Long noncoding RNAs (lncRNAs), which regulate gene expression by acting as signals, decoys, guides, or scaffolds have been implicated in diverse cardiovascular conditions. However, their role in ischemic heart disease in DM remains poorly understood. We provide new insights into the lncRNA expression profile after ischemic heart disease in DM mice. We performed unbiased RNA sequencing of well-characterized type 2 DM model db/db mice or its control db/+ subjected to sham or MI surgery. Computational analysis of the RNA sequencing of these LV tissues identified several differentially expressed lncRNAs between (db/db sham vs. db/db MI) including Gm19522 and Gm8075. lncRNA Gm-19522 may regulate DNA replication via DNA protein kinases, while lncRNA Gm-8075 is associated with cancer gene dysregulation and PI3K/Akt pathways. Thus, the downregulation of lncRNAs Gm19522 and Gm8075 post-MI may serve as potential biomarkers or novel therapeutic targets to improve cardiac repair/recovery in diabetic ischemic heart disease.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Natarajaseenivasan Suriya Muthukumaran
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Noemi Nisini
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Tiffany Lee
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Laboratory of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claudio de Lucia
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority), Napoli 1 Centro, Naples, Italy
- ASL (Azienda Sanitaria Locale-Local Health Authority), Salerno, D.S. 60, Nocera Inferiore, SA, Italy
| | - Michela Piedepalumbo
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority, Napoli 3 Sud, Naples, Italy
| | - Rajika Roy
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Frederikskaj 10B, 2. (Building C), Copenhagen SV, 2450, Denmark
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology and Systems Physiology, Cardiovascular Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Kishore
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
8
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
9
|
Yu Q, Li Y, Zhang N, Lu J, Gan X, Chen L, Liang R, Jian J. Silencing of lncRNA NEAT1 alleviates acute myocardial infarction by suppressing miR-450-5p/ACSL4-mediated ferroptosis. Exp Cell Res 2024; 442:114217. [PMID: 39222870 DOI: 10.1016/j.yexcr.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is principally initiated by dysregulation of iron metabolism and excessive accumulation of ROS, which exacerbates myocardial injury during acute myocardial infarction (AMI). Previous studies have indeed demonstrated the significant involvement of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exerts its pleiotropic effects in the pathophysiology of myocardial infarction, heart failure and atherosclerosis by modulating inflammation, apoptosis, and oxidative stress. However, whether and how NEAT1 mediates myocardial ferroptosis remain unknown. In this study, we found that NEAT1 expression was significantly elevated in hypoxic HL-1 cells and AMI mice, while silencing of NEAT1 alleviated lipid peroxidation and myocardial ferroptosis both in vitro and in vivo. Mechanistically, NEAT1 directly sponged miR-450b-5p and negatively regulated its expression. In addition, miR-450b-5p directly targeted Acyl-CoA synthase long-chain family member 4 (ACSL4). Notably, inhibition of miR-450b-5p reversed the role of NEAT1 in AMI mice. Collectively, these findings newly illustrated that NEAT1 acts as a competitive endogenous RNA (ceRNA) of miR-450-5p in AMI. Especially, silencing of NEAT1 effectively ameliorated myocardium ischemia by suppression of ferroptosis via miR-450-5p/ACSL4 pathway, which providing a brand-new therapeutic strategy for myocardial ischemia injury.
Collapse
Affiliation(s)
- Qiuting Yu
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yuxue Li
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ning Zhang
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jun Lu
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiaowen Gan
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Linglin Chen
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ronggan Liang
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jie Jian
- Guangxi Key Laboratory of Diabetic System Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
10
|
Liu Y, Yang P, Wang J, Peng W, Zhao J, Wang Z. MiRNA Regulates Ferroptosis in Cardiovascular and Cerebrovascular Diseases. DNA Cell Biol 2024; 43:492-509. [PMID: 39417991 DOI: 10.1089/dna.2024.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) significantly contribute to global mortality and morbidity due to their complex pathogenesis involving multiple biological processes. Ferroptosis is an important physiological process in CCVDs, manifested by an abnormal increase in intracellular iron concentration. MiRNAs, a key class of noncoding RNA molecules, are crucial in regulating CCVDs through pathways like glutathione-glutathione peroxidase 4, glutamate/cystine transport, iron metabolism, lipid metabolism, and other oxidative stress pathways. This article summarizes the progress of miRNAs' regulation on CCVDs, aiming to provide insights for the diagnosis and treatment of CCVDs.
Collapse
Affiliation(s)
- Yiman Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Peijuan Yang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Wu Peng
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
11
|
Wang G, Yao Y, Xie J, Wen C. Long noncoding RNA ZFAS1 exerts a suppressive impact on ferroptosis by modulating the miR-150/AIFM2 axis in hepatocellular carcinoma cells. Heliyon 2024; 10:e37225. [PMID: 39296014 PMCID: PMC11409106 DOI: 10.1016/j.heliyon.2024.e37225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
ZNFX1 Antisense RNA 1 (ZFAS1) act as an oncogenic long noncoding RNA in multiple types of cancer. Ferroptosis is an iron-dependent cell death characterized by excessive iron accumulation and lipid peroxidation. However, to date, the functional role and mechanism of ZFAS1 in ferroptosis in hepatocellular carcinoma (HCC) remains largely unknown. The present study revealed that ZFAS1 was upregulated in HCC and upregulation of ZFAS1 indicated poor clinical outcome of HCC patients. Loss- and gain-of-function experiments demonstrated that knockdown of ZFAS1 inhibited HCC cell proliferation and induced ferroptosis, while overexpression of ZFAS1 exerted opposite effects. ZFAS1 enhanced cell proliferation via suppression of ferroptotic death. Mechanistically, ZFAS1 interacted with miR-150 and decreased its expression. AIFM2, the critical ferroptosis protector, was a direct target of ZFAS1/miR-150. ZFAS1 accelerated HCC proliferation and inhibited ferroptosis by the regulation of the miR-150/AIFM2 axis. These discoveries intimate an essential part of ZFAS1/miR-150/AIFM2 in governing HCC ferroptosis, which may provide a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Guangsheng Wang
- Department of Gastrointestinal surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Yongshan Yao
- Department of Emergency surgery, The First Clinical Medical College of China Three Gorges University, China
| | - Jiasheng Xie
- Department of General surgery, Xiling Community Health Service Center, Xiling District, Yichang City, China
| | - Caihong Wen
- Department of Medical oncology, The First Clinical Medical College of China Three Gorges University, China
| |
Collapse
|
12
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
13
|
Wen Y, Lei W, Zhang J, Liu Q, Li Z. Advances in understanding the role of lncRNA in ferroptosis. PeerJ 2024; 12:e17933. [PMID: 39210921 PMCID: PMC11361268 DOI: 10.7717/peerj.17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
LncRNA is a type of transcript with a length exceeding 200 nucleotides, which was once considered junk transcript with no biological function during the transcription process. In recent years, lncRNA has been shown to act as an important regulatory factor at multiple levels of gene expression, affecting various programmed cell death modes including ferroptosis. Ferroptosis, as a new form of programmed cell death, is characterized by a deficiency of cysteine or inactivation of glutathione peroxidase, leading to depletion of glutathione, aggregation of iron ions, and lipid peroxidation. These processes are influenced by many physiological processes, such as the Nrf2 pathway, autophagy, p53 pathway and so on. An increasing number of studies have shown that lncRNA can block the expression of specific molecules through decoy effect, guide specific proteins to function, or promote interactions between molecules as scaffolds. These modes of action regulate the expression of key factors in iron metabolism, lipid metabolism, and antioxidant metabolism through epigenetic or genetic regulation, thereby regulating the process of ferroptosis. In this review, we snapshotted the regulatory mechanism of ferroptosis as an example, emphasizing the regulation of lncRNA on these pathways, thereby helping to fully understand the evolution of ferroptosis in cell fate.
Collapse
Affiliation(s)
- Yating Wen
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jie Zhang
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Qiong Liu
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Liu Y, Wang Q, Sun Z, Chen H, Yue L, Yang J, Li Z, Lv X, Zhou X. Investigating the Effects of AL049796.1 Silencing in Inhibiting High Glucose-Induced Colorectal Cancer Progression. DNA Cell Biol 2024; 43:401-413. [PMID: 38853745 DOI: 10.1089/dna.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. In vitro experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. In vivo, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Qi Wang
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Zicheng Sun
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Haijun Chen
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Luxiao Yue
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jiachen Yang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaojun Zhou
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Zhuang L, Jin G, Wang Q, Ge X, Pei X. Long Non-coding RNA ZFAS1 Regulates Fibrosis and Scortosis in the Cell Model of Diabetic Nephropathy Through miR-525-5p/SGK1 Axis. Appl Biochem Biotechnol 2024; 196:3731-3746. [PMID: 37768477 DOI: 10.1007/s12010-023-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Diabetic nephropathy (DN) is a common clinical syndrome in diabetic patients. Functional characterization of non-coding (ncRNAs) involved in the progression of DN can provide insights into the diagnosis and therapeutic management of DN. Human kidney proximal tubular epithelial cells (HK-2) were challenged by high glucose (HG, 50 mM) as a cell model of DN. The expression level of long non-coding RNA (lncRNA) ZFAS1 was quantified by qRT-PCR. The proteins and cytokines related to fibrosis and scortosis in DN (NLRP3, GSDMD-N, IL-1β and Caspase 1, fibronectin, collagen I, collagen III, IL-1β, and IL-18) were examined by western blot or ELISA. RNA precipitation and luciferase reporter activity experiments were conducted to assess the molecular associations. ZFAS1 and SGK1 were highly induced in HK-2 cells challenged with HG, while miR-525-5p downregulated upon HG treatment. ZFAS1 knockdown attenuated HG-induced fibrosis and scortosis in HK-2 cells by reducing the levels of NLRP3, GSDMD-N, Caspase 1, fibronectin, collagen I/III, IL-1β, and IL-18. Mechanically, ZFAS1 knockdown protected HK-2 cells from HG-induced injury by upregulating miR-525-5p and repressing SGK1 expression. Overall, our results suggest that knocking down ZFAS1 may be formulated as a protective strategy in ameliorating DN progression through regulating miR-525-5p/SGK1 pathway. Targeting ZFAS1 could be further explored as a potential approach for the management of DN.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China.
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Xiaoxu Ge
- Department of Endocrinology Tongren Hospital Affiliated to Jiaotong University, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| |
Collapse
|
16
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
17
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
18
|
Yao X, Huang X, Chen J, Lin W, Tian J. Roles of non-coding RNA in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:227. [PMID: 38951895 PMCID: PMC11218407 DOI: 10.1186/s12933-024-02252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Xi Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyue Huang
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiqiang Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Wu H, Huang Q, Xu T, Zhang J, Zeng J, Wang Q, Zhang Y, Yu Z. LncRNA OIP5-AS1 Upregulates the Cyclin D2 Levels to Promote Metastasis of Breast Cancer by Targeting miR-150-5p. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04992-6. [PMID: 38888699 DOI: 10.1007/s12010-024-04992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Breast cancer (BC) is a cancer that seriously affects women's health. BC cell migration increases the mortality of BC patients. Current studies have shown that long noncoding RNAs (LncRNAs) are related to the metastasis mechanism of BC. This study aimed to explore the function and role of LncRNA OIP5-AS1 in BC. And we analyzed its regulatory mechanism and related modification process. METHODS Our study analyzed the expression pattern of OIP5-AS1 in BC tissues and cell lines by qRT-PCR. The effects of OIP5-AS1 on the function of BC cells were detected by CCK-8 and transwell experiments. Bioinformatics analysis and double luciferase reporter gene detection were used to confirm the correlation between OIP5-AS1 and miR-150-5p and between miR-150-5p and Cyclin D2 (CCND2). The rescue test analyzed the effect of miR-150-5p regulating OIP5-AS1. In addition, the N6-methyladenosine (m6A) modification process of OIP5-AS1 was analyzed by RNA m6A dot blot, RIP assay, and double luciferase report experiment. RESULTS OIP5-AS1 was significantly upregulated in BC tissues and cell lines. OIP5-AS1 knockdown inhibited BC cell viability, migration and invasion. OIP5-AS1 upregulated CCND2 by binding with miR-150-5p. This process affected the metastasis of BC. Higher degree of m6A methylation was confirmed in BC cell lines. There were some binding sites between methyltransferase like 3 (METTL3) and OIP5-AS1. Moreover, the silencing of METTL3 inhibited the OIP5-AS1 expression through decreasing the m6A methylation levels. CONCLUSIONS LncRNA OIP5-AS1 promoted cell viability and metastasis of BC cells by targeting miR-150-5p/CCND2 axis. This process was modified by m6A methylation of METTL3.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Tai Xu
- Department of Breast Surgery, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Jinfeng Zhang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Juanzi Zeng
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Qiuming Wang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Yunuo Zhang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China.
| |
Collapse
|
20
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
21
|
Jin S, Wang H, Zhang X, Song M, Liu B, Sun W. Emerging regulatory mechanisms in cardiovascular disease: Ferroptosis. Biomed Pharmacother 2024; 174:116457. [PMID: 38518600 DOI: 10.1016/j.biopha.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, autophagy, and other types of cell death, is a novel iron-dependent regulated cell death characterized by the accumulation of lipid peroxides and redox imbalance with distinct morphological, biochemical, and genetic features. Dysregulation of iron homeostasis, the disruption of antioxidative stress pathways and lipid peroxidation are crucial in ferroptosis. Ferroptosis is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis, cardiomyopathy, myocardial infarction, ischemia-reperfusion injury, abdominal aortic aneurysm, aortic dissection, and heart failure. Therefore, a comprehensive understanding of the mechanisms that regulate ferroptosis in cardiovascular diseases will enhance the prevention and treatment of these diseases. This review discusses the latest findings on the molecular mechanisms of ferroptosis and its regulation in cardiovascular diseases, the application of ferroptosis modulators in cardiovascular diseases, and the role of traditional Chinese medicines in ferroptosis regulation to provide a comprehensive understanding of the pathogenesis of cardiovascular diseases and identify new prevention and treatment options.
Collapse
Affiliation(s)
- Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| |
Collapse
|
22
|
Li SQ, Lv F, Xu WT, Yin YX, Wei HT, Li KZ, Hu BL. lncRNA SNHG4 inhibits ferroptosis by orchestrating miR-150-5p/c-Myb axis in colorectal cancer. Int J Biol Macromol 2024; 268:131961. [PMID: 38692535 DOI: 10.1016/j.ijbiomac.2024.131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
LncRNAs have shown to regulate ferroptosis in colorectal cancer (CRC), but the mechanism remains largely unknown. This study unveiled the mechanism of SNHG4 underlying ferroptosis in CRC. RNA-seq and RT-PCR assay confirmed SNHG4 was decreased after Erastin treatment in CRC cells. Overexpression of SNHG4 inhibited and silence promoted CRC cells ferroptosis. SNHG4 was positively correlated to c-Myb in CRC tissues and both located in cytoplasm of CRC cells. RIP and RNA pull-down assays verified the interaction between SNHG4 and c-Myb. Silence of c-Myb alleviated the suppressing effect on ferroptosis by SNHG4 in CRC cells. Dual-luciferase reporter assay revealed that SNHG4 sponging miR-150-5p in CRC cells. Overexpression of SNHG4 decreased the miR-150-5p and increased c-Myb expression. c-Myb was a direct target gene of miR-150-5p in CRC cells. Moreover, effect of CDO1 on ferroptosis was regulated transcriptionally by c-Myb, overexpression of c-Myb reduce CDO1 expression and enhance the GPX4 levels. The animal models confirmed that regulatory effect of SNHG4 on miR-150-5p and c-Myb after inducing ferroptosis. We concluded that SNHG4 inhibited Erastin-induce ferroptosis in CRC, this effect is via sponging miR-150-5p to regulate c-Myb expression, and activated CDO1/GPX4 axis. These findings provide insights into the regulatory mechanism of SNHG4 on ferroptosis.
Collapse
Affiliation(s)
- Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Feng Lv
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Wen-Ting Xu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, China.
| |
Collapse
|
23
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
24
|
Ma X, Mei S, Wuyun Q, Zhou L, Sun D, Yan J. Epigenetics in diabetic cardiomyopathy. Clin Epigenetics 2024; 16:52. [PMID: 38581056 PMCID: PMC10996175 DOI: 10.1186/s13148-024-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired systolic function in the late stages. Accumulating researches have revealed the association between DCM and various epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dating Sun
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Tang YJ, Zhang Z, Yan T, Chen K, Xu GF, Xiong SQ, Wu DQ, Chen J, Jose PA, Zeng CY, Fu JJ. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53. Cardiovasc Diabetol 2024; 23:116. [PMID: 38566123 PMCID: PMC10985893 DOI: 10.1186/s12933-024-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yuan-Juan Tang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Tong Yan
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Guo-Fan Xu
- Department of Cardiology and Endocrinolgy, Pangang Group Chengdu Hospital, Chengdu, 610066, China
| | - Shi-Qiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Dai-Qian Wu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Chen
- Department of Cardiovascular Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, 20037, USA
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China.
- Cardiovascular Research Center of Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400042, China.
| | - Jin-Juan Fu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
26
|
Li Y, Fu Q, Fang J, Xu Z, Zhang C, Tan L, Liao X, Wu Y. Analysis of ceRNA Network and Identification of Potential Treatment Target and Biomarkers of Endothelial Cell Injury in Sepsis. Genet Test Mol Biomarkers 2024; 28:133-143. [PMID: 38501698 DOI: 10.1089/gtmb.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background: Sepsis is a complex clinical syndrome caused by a dysregulated host immune response to infection. This study aimed to identify a competing endogenous RNA (ceRNA) network that can greatly contribute to understanding the pathophysiological process of sepsis and determining sepsis biomarkers. Methods: The GSE100159, GSE65682, GSE167363, and GSE94717 datasets were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene coexpression network analysis was performed to find modules possibly involved in sepsis. A long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network was constructed based on the findings. Single-cell analysis was performed. Human umbilical vein endothelial cells were treated with lipopolysaccharide (LPS) to create an in vitro model of sepsis for network verification. Reverse transcription-polymerase chain reaction, fluorescence in situ hybridization, and luciferase reporter genes were used to verify the bioinformatic analysis. Result: By integrating data from three GEO datasets, we successfully constructed a ceRNA network containing 18 lncRNAs, 7 miRNAs, and 94 mRNAs based on the ceRNA hypothesis. The lncRNA ZFAS1 was found to be highly expressed in LPS-stimulated endothelial cells and may thus play a role in endothelial cell injury. Univariate and multivariate Cox analyses showed that only SLC26A6 was an independent predictor of prognosis in sepsis. Overall, our findings indicated that the ZFAS1/hsa-miR-449c-5p/SLC26A6 ceRNA regulatory axis may play a role in the progression of sepsis. Conclusion: The sepsis ceRNA network, especially the ZFAS1/hsa-miR-449c-5p/SLC26A6 regulatory axis, is expected to reveal potential biomarkers and therapeutic targets for sepsis management.
Collapse
Affiliation(s)
- Yulin Li
- The Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qinghui Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Junjun Fang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhipeng Xu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chunhu Zhang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longwei Tan
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Liao
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Wu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
28
|
Wang Y, Ping LF, Bai FY, Zhang XH, Li GH. Hmgcs2 is the hub gene in diabetic cardiomyopathy and is negatively regulated by Hmgcs2, promoting high glucose-induced cardiomyocyte injury. Immun Inflamm Dis 2024; 12:e1191. [PMID: 38477658 DOI: 10.1002/iid3.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Li-Feng Ping
- Department of General Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Fu-Yan Bai
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xin-Huan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Guang-Hong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
29
|
Hou K, Liu L, Fang ZH, Zong WX, Sun D, Guo Z, Cao L. The role of ferroptosis in cardio-oncology. Arch Toxicol 2024; 98:709-734. [PMID: 38182913 DOI: 10.1007/s00204-023-03665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.
Collapse
Affiliation(s)
- Kai Hou
- Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
- Pu'er People's Hospital, Yunnan, 665000, China.
| | - Lin Liu
- Institute of Natural Sciences, MOE-LSC, School of Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daqiang Sun
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Zhigang Guo
- Tianjin Medical University, Tianjin, 300070, China
- Tianjin Chest Hospital, Tianjin, 300222, China
- Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, 300222, China.
- Chest Hospital, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
30
|
Zhao L, Shi L, Yang Z, Zheng M, Sun Z, Sun L, Gu M, Song X, Liu G, Miao F, Wang M, Zheng S, Zhang P, Tang N, Liu K. Effect of plasma exosome lncRNA on isoproterenol hydrochloride-induced cardiotoxicity in rats. Toxicol Appl Pharmacol 2024; 484:116840. [PMID: 38307258 DOI: 10.1016/j.taap.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Isoprenaline hydrochloride (IH) is a β-adrenergic receptor agonist commonly used in the treatment of hypotension, shock, asthma, and other diseases. However, IH-induced cardiotoxicity limits its application. A large number of studies have shown that long noncoding RNA (lncRNA) regulates the occurrence and development of cardiovascular diseases. This study aimed to investigate whether abnormal lncRNA expression is involved in IH-mediated cardiotoxicity. First, the Sprague-Dawley (SD) rat myocardial injury model was established. Circulating exosomes were extracted from the plasma of rats and identified. In total, 108 differentially expressed (DE) lncRNAs and 150 DE mRNAs were identified by sequencing. These results indicate that these lncRNAs and mRNAs are substantially involved in chemical cardiotoxicity. Further signaling pathway and functional studies indicated that lncRNAs and mRNAs regulate several biological processes, such as selective mRNA splicing through spliceosomes, participate in sphingolipid metabolic pathways, and play a certain role in the circulatory system. Finally, we obtained 3 upregulated lncRNAs through reverse transcription-quantitative PCR (RT-qPCR) verification and selected target lncRNA-mRNA pairs according to the regulatory relationship of lncRNA/mRNA, some of which were associated with myocardial injury. This study provides valuable insights into the role of lncRNAs as novel biomarkers of chemical-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liyuan Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China; InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, 201203, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, 201203, China
| | - Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, 201203, China
| | - Zhimin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China; InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Luyao Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China; InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Mengyun Gu
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, 201203, China
| | - Xin Song
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China; InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Gang Liu
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Feng Miao
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Ming Wang
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China; Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330038, China
| | - Shaoqiu Zheng
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Peng Zhang
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Naping Tang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, 201203, China; Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China.
| | - Kelan Liu
- Intensive Care Unit, Liyang People's Hospital, Liyang, Jiangsu 213300, China.
| |
Collapse
|
31
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
32
|
Cai L, Tan Y, Holland B, Wintergerst K. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 2024; 24:71-84. [PMID: 38321349 PMCID: PMC11517829 DOI: 10.1007/s12012-024-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on "Cell death and diabetic cardiomyopathy," was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA.
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA.
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brian Holland
- Division of Cardiology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kupper Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
33
|
Song Z, Wang J, Zhang L. Ferroptosis: A New Mechanism in Diabetic Cardiomyopathy. Int J Med Sci 2024; 21:612-622. [PMID: 38464828 PMCID: PMC10920843 DOI: 10.7150/ijms.88476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/12/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic cardiomyopathy (DC) is a pathophysiologic condition caused by diabetes mellitus (DM) in the absence of coronary artery disease, valvular heart disease, and hypertension that can lead to heart failure (HF), manifesting itself in the early stages with left ventricular hypertrophy and diastolic dysfunction, with marked HF and decreased systolic function in the later stages. There is still a lack of direct evidence to prove the exact existence of DC. Ferroptosis is a novel form of cell death characterized by reactive oxygen species (ROS) accumulation and lipid peroxidation. Several cell and animal studies have shown that ferroptosis is closely related to DC progression. This review systematically summarizes the related pathogenic mechanisms of ferroptosis in DC, including the reduction of cardiac RDH10 induced ferroptosis in DC cardiomyocytes which mediated by retinol metabolism disorders; CD36 overexpression caused lipid deposition and decreased GPX4 expression in DC cardiomyocytes, leading to the development of ferroptosis; Nrf2 mediated iron overload and lipid peroxidation in DC cardiomyocytes and promoted ferroptosis; lncRNA-ZFAS1 as a ceRNA, combined with miR-150-5p to inhibit CCND2 expression in DC cardiomyocytes, thereby triggering ferroptosis.
Collapse
Affiliation(s)
- Zichong Song
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Lijun Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
34
|
Ryabov VV, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Kilin M, Gusakova SV, Gombozhapova AE, Panteleev OO. Ferroptosis, a Regulated Form of Cell Death, as a Target for the Development of Novel Drugs Preventing Ischemia/Reperfusion of Cardiac Injury, Cardiomyopathy and Stress-Induced Cardiac Injury. Int J Mol Sci 2024; 25:897. [PMID: 38255971 PMCID: PMC10815150 DOI: 10.3390/ijms25020897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is about 6% and has not decreased in recent years. The leading cause of death of these patients is ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study, it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation. There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1 alleviates myocardial ferroptosis. The roles of GSK-3β and NOS in the regulation of ferroptosis require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis.
Collapse
Affiliation(s)
- Vyacheslav V. Ryabov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Evgeniy V. Vyshlov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Mikhail Kilin
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Svetlana V. Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk 634050, Russia;
| | - Alexandra E. Gombozhapova
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| | - Oleg O. Panteleev
- Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (E.V.V.); (A.V.M.); (M.K.); (A.E.G.); (O.O.P.)
| |
Collapse
|
35
|
Wang H, Huang Z, Du C, Dong M. Iron Dysregulation in Cardiovascular Diseases. Rev Cardiovasc Med 2024; 25:16. [PMID: 39077672 PMCID: PMC11263000 DOI: 10.31083/j.rcm2501016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 07/31/2024] Open
Abstract
Iron metabolism plays a crucial role in various physiological functions of the human body, as it is essential for the growth and development of almost all organisms. Dysregulated iron metabolism-manifested either as iron deficiency or overload-is a significant risk factor for the development of cardiovascular disease (CVD). Moreover, emerging evidence suggests that ferroptosis, a form of iron-dependent programed cell death, may also contribute to CVD development. Understanding the regulatory mechanisms of iron metabolism and ferroptosis in CVD is important for improving disease management. By integrating different perspectives and expertise in the field of CVD-related iron metabolism, this overview provides insights into iron metabolism and CVD, along with approaches for diagnosing, treating, and preventing CVD associated with iron dysregulation.
Collapse
Affiliation(s)
- Hui Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Zhongmin Huang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Chenyan Du
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| |
Collapse
|
36
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
37
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
38
|
Xuan X, Zhang S. Targeting the programmed cell death (PCD) signaling mechanism with natural substances for the treatment of diabetic cardiomyopathy (DCM). Phytother Res 2023; 37:5495-5508. [PMID: 37622685 DOI: 10.1002/ptr.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes, characterized by structural and functional abnormalities in the hearts of diabetic patients without hypertension, coronary heart disease, or valvular heart disease. DCM can progress to heart failure, which is a significant cause of death in diabetic patients, but currently, there is no effective treatment available. Programmed cell death (PCD) is a genetically regulated form of cell death that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD is essential for tissue homeostasis and normal development of the body. DCM is a complex condition, and abnormalities in the cascade of PCD signaling have been observed in its pathological process, suggesting that targeting PCD could be a potential therapeutic strategy. Studies have shown that natural substances can effectively modulate PCD to intervene in the treatment of DCM, and their use is safe. This review explores the role of different forms of PCD in the pathogenesis of DCM and summarizes the research progress in targeting PCD with natural substances to treat DCM. It can serve as a basis for further research and drug development to provide new treatment strategies for DCM patients.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Zhang Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review. Medicine (Baltimore) 2023; 102:e36299. [PMID: 38013301 PMCID: PMC10681453 DOI: 10.1097/md.0000000000036299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Cardiovascular Medicine, Wuxi No.2 People’s Hospital, Wuxi City, People’s Republic of China
| |
Collapse
|
40
|
Wang E, Chen S, Wang H, Chen T, Chakrabarti S. Non-coding RNA-mediated endothelial-to-mesenchymal transition in human diabetic cardiomyopathy, potential regulation by DNA methylation. Cardiovasc Diabetol 2023; 22:303. [PMID: 37924123 PMCID: PMC10625293 DOI: 10.1186/s12933-023-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major complication of diabetes and a risk factor for cardiovascular disease. Endothelial dysfunction is central to DCM, and endothelial-to-mesenchymal transition (EndMT) is a key form of endothelial dysfunction in diabetes. EndMT in DCM has been well-studied in model systems and has been found to be epigenetically regulated by non-coding RNAs (ncRNAs). However, EndMT in DCM and its associated epigenetic changes need further characterization in human patients. It is also not known if ncRNAs are affected by changes in DNA methylation in DCM. This study aims to confirm in human hearts, the findings from animal and cell studies, and potentially provide novel insight into interactions between DNA methylation and ncRNAs in EndMT in DCM. METHODS AND RESULTS Heart tissues were collected from autopsy patients, fixed in formalin, and embedded in paraffin. Thin sections from paraffin-embedded tissues were used for histology and immunofluorescence analyses, where we confirmed that diabetic patients showed increased cardiac fibrosis that EndMT had occurred. Tissue curls from the paraffin-embedded tissues were used for RT-qPCR and methylation analyses. RT-qPCR quantitatively showed that EndMT occurs in the hearts of diabetics, and that EndMT in human hearts corresponded to changes in key ncRNAs. Methylation analysis showed that some of the EndMT-related ncRNAs were regulated by DNA promoter methylation, while others may be regulated through different epigenetic mechanisms. CONCLUSIONS We show that EndMT is a relevant pathological process in human hearts during DCM, and that its occurrence coincides with changes in relevant ncRNAs. We further find that interplay between DNA methylation and certain ncRNAs involved in the regulation of EndMT may contribute to the observed changes in ncRNA expression. These findings reinforce the role of EndMT in patients afflicted with DCM and underscore the complexities and importance of the interactions between different facets of epigenetic regulation.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Honglin Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Tori Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
41
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07491-8. [PMID: 37702834 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Wang Y, Wu J. Ferroptosis: a new strategy for cardiovascular disease. Front Cardiovasc Med 2023; 10:1241282. [PMID: 37731525 PMCID: PMC10507265 DOI: 10.3389/fcvm.2023.1241282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Cardiovascular disease (CVD) is currently one of the prevalent causes of human death. Iron is one of the essential trace elements in the human body and a vital component of living tissues. All organ systems require iron for various metabolic processes, including myocardial and skeletal muscle metabolism, erythropoiesis, mitochondrial function, and oxygen transport. Its deficiency or excess in the human body remains one of the nutritional problems worldwide. The total amount of iron in a normal human body is about 3-5 g. Iron deficiency may cause symptoms such as general fatigue, pica, and nerve deafness, while excessive iron plays a crucial role in the pathophysiological processes of the heart through ferroptosis triggered by the Fenton reaction. It differs from other cell death modes based on its dependence on the accumulation of lipid peroxides and REDOX imbalance, opening a new pathway underlying the pathogenesis and mechanism of CVDs. In this review, we describe the latest research progress on the mechanism of ferroptosis and report its crucial role and association with miRNA in various CVDs. Finally, we summarise the potential therapeutic value of ferroptosis-related drugs or ferroptosis inhibitors in CVDs.
Collapse
Affiliation(s)
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Shariati A, Shahabi Raberi V, Masumi M, Tarbiat A, Rastgoo E, Faramarz Zadeh R. The Regulation of Pyroptosis and Ferroptosis by MicroRNAs in Cardiovascular Diseases. Galen Med J 2023; 12:1-9. [PMID: 38974133 PMCID: PMC11227648 DOI: 10.31661/gmj.v12i0.2933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 07/09/2024] Open
Abstract
Cardiovascular diseases (CVDs) are considered the most prevalent noncommunicable disease and the leading cause of death worldwide. A plethora of evidence has revealed that microRNAs (miRNAs) could control the inhibition or progression of CVDs by regulating pivotal cell processes ranging from metabolism and homeostasis to programmed cell death (PCD). Pyroptosis and ferroptosis are two major types of nonapoptotic PCDs involved in the pathogenesis of heart failure. However, no study has discussed the crosstalk between miRNAs and these two types of PCDs in the CVDs. The current review demonstrated that different types of miRNAs can regulate both ferroptosis and pyroptosis and thereby affect CVDs progression and inhibition. Altogether, the discussed content encourages further studies to confirm that mentioned pathways are suitable to be considered as novel therapeutic approaches against CVDs.
Collapse
Affiliation(s)
- Akram Shariati
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences,
Urmia, Iran
| | - Venus Shahabi Raberi
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| | - Mehdi Masumi
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| | - Ali Tarbiat
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| | - Elham Rastgoo
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Reza Faramarz Zadeh
- Seyed-Al-Shohada Cardiology Hospital, Urmia University of Medical Sciences, Urmia,
Iran
| |
Collapse
|
44
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
45
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
46
|
Hou J, Liang WY, Xiong S, Long P, Yue T, Wen X, Wang T, Deng H. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Sci Rep 2023; 13:10258. [PMID: 37355664 PMCID: PMC10290640 DOI: 10.1038/s41598-023-37378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tianchen Wang
- Alfred E. Mann Department of Biomedical Engineering, University of South California, Los Angeles, CA, USA
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
47
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
48
|
Mannar V, Boro H, Patel D, Agstam S, Dalvi M, Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:46-53. [PMID: 37313245 PMCID: PMC10258626 DOI: 10.17925/ee.2023.19.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes and epigenetics' with additional terms such as 'risks', 'pathogenesis', 'complications of diabetes' and 'therapeutics'. Epigenetics plays an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-i nduced permanent epigenetic modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of micro-and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, to the development of newer therapeutic targets.
Collapse
Affiliation(s)
- Velmurugan Mannar
- Department of Medicine, Aarupadai Veedu Medical College, Puducherry, India
| | - Hiya Boro
- Department of Endocrinology and Metabolism, Aadhar Health Institute, Hisar, India
| | - Deepika Patel
- Department of Endocrinology, Mediheal Hospital, Nairobi, Kenya
| | - Sourabh Agstam
- Department of Cardiology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Mazhar Dalvi
- Department of Endocrinology, Mediclinic Al Noor Hospital, Abu Dhabi, United Arab Emirates
| | - Vikash Bundela
- Department of Gastroenterology, Aadhar Health Institute, Hisar, India
| |
Collapse
|
49
|
Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119480. [PMID: 37127193 DOI: 10.1016/j.bbamcr.2023.119480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The annual incidence of metabolic diseases such as diabetes, non-alcoholic fatty liver disease (NAFLD), osteoporosis, and atherosclerosis (AS) is increasing, resulting in a heavy burden on human health and the social economy. Ferroptosis is a novel form of programmed cell death driven by iron-dependent lipid peroxidation, which was discovered in recent years. Emerging evidence has suggested that ferroptosis contributes to the development of metabolic diseases. Here, we summarize the mechanisms and molecular signaling pathways involved in ferroptosis. Then we discuss the role of ferroptosis in metabolic diseases. Finally, we analyze the potential of targeting ferroptosis as a promising therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- Ling Xie
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Bin Fang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430072, Hubei, China.
| |
Collapse
|
50
|
Su J, Hu Y, Cheng J, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Yu Q, Du W, Chen X. Comprehensive analysis of the RNA transcriptome expression profiles and construction of the ceRNA network in heart failure patients with sacubitril/valsartan therapeutic heterogeneity after acute myocardial infarction. Eur J Pharmacol 2023; 944:175547. [PMID: 36708978 DOI: 10.1016/j.ejphar.2023.175547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Sacubitril/valsartan has a noteworthy advantage in improving ventricular remodelling, as well as reducing cardiovascular mortality and the rate of heart failure (HF) readmission. However, clinically, some patients with HF still have low sensitivity to sacubitril/valsartan, indicating sacubitril/valsartan resistance (SVR). A total of 46 patients with HF after AMI (23 SVR and 23 non-sacubitril/valsartan resistance (NSVR)) were selected. Five SVR and 5 matched NSVR samples were screened for differentially expressed ncRNAs along with mRNAs. A total of 124 differentially expressed miRNAs, 137 circRNAs, 237 lncRNAs and 50 mRNAs were screened by RNA sequencing technology. After quantitative real-time PCR (qRT‒PCR) verification of selected biomarkers in 18 pairs of samples, we found that for patients with SVR, hsa-miR-543, hsa-miR-642b-5p, hsa-miR-760, hsa_circ_0137499, ENST00000474394, ENST00000528337, E2F1, NEAT1, and YTHDF2 were upregulated, and hsa-miR-424-5p, hsa-miR-21-3p, hsa_circRNA_0003275, hsa_circRNA_0004494, hsa_circ_0093522, ENST00000467951, ENST00000558177, ACTA2, ANPEP, and CAMP were downregulated. Then, with the help of our constructed ceRNA network and functional annotation enrichment, we speculated that inflammatory pathways (such as the apelin signalling pathway) and lipid metabolism pathways (such as fatty acid metabolism) may be involved in the regulation of SVR. These discoveries lay a foundation for further mechanistic research and provide a direction for individualized drug administration.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, PR China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China
| | - Xiaojin Li
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China.
| | - Weiping Du
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China.
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China.
| |
Collapse
|