1
|
Zhao F, Wen D, Zeng L, Wang R, Wang D, Xu H, Li R, Chi H. High anti-Müllerian hormone level as a predictor of poor pregnancy outcomes in women with polycystic ovary syndrome undergoing in vitro fertilization/intracytoplasmic sperm injection: a retrospective cohort study. Reprod Biol Endocrinol 2025; 23:15. [PMID: 39875902 PMCID: PMC11773973 DOI: 10.1186/s12958-025-01347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE To study the correlation between anti-Müllerian hormone levels and pregnancy outcomes after in vitro fertilization/intracytoplasmic sperm injection in women with polycystic ovary syndrome, which remains controversial. METHODS This retrospective cohort study recruited 4,719 women with infertility and polycystic ovary syndrome aged 20-40 years who underwent treatment at the Reproductive Center of Peking University Third Hospital between February 2017 and June 2023. We divided the participants into three groups according to the 25th and 75th percentile cutoffs of serum anti-Müllerian hormone: low (≤ 4.98 ng/mL, n = 1,198), average (4.98 - 10.65 ng/mL, n = 2,346), and high (≥ 10.65 ng/mL, n = 1,175). Pregnancy outcomes included live birth rate, miscarriage rate, clinical pregnancy rate, and cumulative live birth rate. RESULTS The live birth rate for fresh embryo transfer was 39.8%, 35.9%, and 30.4% in the low, average, and high anti-Müllerian hormone groups, respectively. The miscarriage rate was 11.3%, 17.1%, and 21.8% in the low, average, and high anti-Müllerian hormone groups, respectively. Significant intergroup differences were observed in the live birth rate (P = 0.017) and miscarriage rate (P = 0.018). No significant intergroup difference was observed in the clinical pregnancy rate (P = 0.204) or cumulative live birth rate (P = 0.423). After adjusting the confounders by multivariable logistic regression analysis, anti-Müllerian hormone was associated with decreased live birth rate in the high anti-Müllerian hormone group compared with that in the low anti-Müllerian hormone group (odds ratio: 0.629, 95% confidence interval: 0.460-0.860). Anti-Müllerian hormone was associated with increased miscarriage rate in the average and high anti-Müllerian hormone groups compared with that in the low anti-Müllerian hormone group (average vs. low: odds ratio: 1.592, 95% confidence interval: 1.017-2.490); high vs. low: odds ratio: 2.045, 95% confidence interval: 1.152-3.633). CONCLUSION High anti-Müllerian hormone is a prognostic factor for reduced live birth rate after fresh embryo transfer in women with polycystic ovary syndrome aged 20-40 years undergoing in vitro fertilization/intracytoplasmic sperm injection, and is associated with increased miscarriage rate in these patients.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Duo Wen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Lin Zeng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Dingran Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Huiyu Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Hongbin Chi
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
2
|
Jang H, Song G, Lim W, Park S. Toxic effects of dibutyl phthalate on trophoblast through mitochondria mediated cellular dysfunction. Toxicol Appl Pharmacol 2024; 495:117186. [PMID: 39647510 DOI: 10.1016/j.taap.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Dibutyl phthalate is a chemical commonly used as a plasticizer in the production of daily necessaries, such as cosmetics and toys. Although several toxic effects of dibutyl phthalate have been confirmed, those related to pregnancy are unknown. Trophoblasts are critical for fetal and placental development, and trophoblast damage may cause preeclampsia. This study aimed to confirm the toxic effect of dibutyl phthalate on trophoblasts. We used the human trophoblast cell line HTR-8/SVneo and human choriocarcinoma JEG-3 cells as a placental trophoblast model to investigate the toxic effects of dibutyl phthalate. Both cell lines were treated with dibutyl phthalate (0-20 μg/mL) to verify the mechanisms regulating trophoblast function. Dibutyl phthalate treatment significantly reduced trophoblast viability, reduced invasion ability, and induced mitochondrial depolarization. Ultimately, dibutyl phthalate regulated the PI3K and MAPK signaling pathways and the expression of autophagy-related proteins ATG5, LC3B, and SQSTM1/p62. We concluded that dibutyl phthalate induced autophagy and effectively weakened trophoblast function. Additionally, we conducted experiments to assess the potential effects of monobutyl phthalate, a metabolite of dibutyl phthalate, on cellular mobility, penetration, and autophagy induction. Our results demonstrated that monobutyl phthalate impaired these functions and weakened the trophoblast barrier, after dibutyl phthalate metabolized. Thus, exposure to dibutyl phthalate and its metabolite monobutyl phthalate can damage trophoblast function, highlighting their potential as hazardous substances that impair trophoblast barrier integrity.
Collapse
Affiliation(s)
- Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea; Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
3
|
Hong L, Xiao S, Diao L, Lian R, Chen C, Zeng Y, Liu S. Decreased AMPK/SIRT1/PDK4 induced by androgen excess inhibits human endometrial stromal cell decidualization in PCOS. Cell Mol Life Sci 2024; 81:324. [PMID: 39080028 PMCID: PMC11335245 DOI: 10.1007/s00018-024-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.
Collapse
Affiliation(s)
- Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Shan Xiao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China.
| |
Collapse
|
4
|
Cheng XX, Li MQ, Peng T. Novel Insights into Prokineticin 1 Role in Pregnancy-related Diseases. Int J Med Sci 2024; 21:27-36. [PMID: 38164347 PMCID: PMC10750342 DOI: 10.7150/ijms.76817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
Prokineticin 1 (PROK1) is a secreted protein involved in a range of physiological activities such as cell proliferation, migration, angiogenesis, and neuronal cell proliferation. Emerging evidences show that PROK1/PROK receptors (PROKRs) are expressed by trophoblasts, and decidual stroma cells at the maternal-fetal interface. PROK1 plays a critical role in successful pregnancy establishment by regulating the decidualization, implantation and placental development. Dysregulation of prokineticin signaling has been described in certain pathological states associated with pregnancy, including pre-eclampsia, recurrent miscarriage and fetal growth restriction. In this review, the expression and pleiotropic roles of PROK1 under physiological and pathological pregnancy conditions are discussed.
Collapse
Affiliation(s)
- Xi-Xi Cheng
- Shanghai Changning Maternity & Infant Health Hospital, China
- The Department of Obstetrics, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Ting Peng
- Shanghai Changning Maternity & Infant Health Hospital, China
- The Department of Obstetrics, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200080, China
| |
Collapse
|
5
|
Salamon D, Ujvari D, Hellberg A, Hirschberg AL. DHT and Insulin Upregulate Secretion of the Soluble Decoy Receptor of IL-33 From Decidualized Endometrial Stromal Cells. Endocrinology 2023; 165:bqad174. [PMID: 37972259 PMCID: PMC10681354 DOI: 10.1210/endocr/bqad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Interleukin 33 (IL-33) signaling regulates most of the key processes of pregnancy, including decidualization, trophoblast proliferation and invasion, vascular remodeling, and placental growth. Accordingly, dysregulation of IL-33, its membrane-bound receptor (ST2L, transducer of IL-33 signaling), and its soluble decoy receptor (sST2, inhibitor of IL-33 signaling) has been linked to a wide range of adverse pregnancy outcomes that are common in women with obesity and polycystic ovary syndrome, that is, conditions associated with hyperandrogenism, insulin resistance, and compensatory hyperinsulinemia. To reveal if androgens and insulin might modulate uteroplacental IL-33 signaling, we investigated the effect of dihydrotestosterone (DHT) and/or insulin on the expression of ST2L and sST2 (along with the activity of their promoter regions), IL-33 and sIL1RAP (heterodimerization partner of sST2), during in vitro decidualization of endometrial stromal cells from 9 healthy women. DHT and insulin markedly upregulated sST2 secretion, in addition to the upregulation of its messenger RNA (mRNA) expression, while the proximal ST2 promoter, from which the sST2 transcript originates, was upregulated by insulin, and in a synergistic manner by DHT and insulin combination treatment. On the other hand, sIL1RAP was slightly downregulated by insulin and IL-33 mRNA expression was not affected by any of the hormones, while ST2L mRNA expression and transcription from its promoter region (distal ST2 promoter) could not be detected or showed a negligibly low level. We hypothesize that high levels of androgens and insulin might lead to subfertility and pregnancy complications, at least partially, through the sST2-dependent downregulation of uteroplacental IL-33 signaling.
Collapse
Affiliation(s)
- Daniel Salamon
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, National Pandemic Centre, Centre for Translational Microbiome Research, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Anton Hellberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
6
|
Cui SS, Zhang P, Sun L, Yuan YLL, Wang J, Zhang FX, Li R. Mucin1 induced trophoblast dysfunction in gestational diabetes mellitus via Wnt/β-catenin pathway. Biol Res 2023; 56:48. [PMID: 37608294 PMCID: PMC10463356 DOI: 10.1186/s40659-023-00460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND To elucidate the role of Mucin1 (MUC1) in the trophoblast function (glucose uptake and apoptosis) of gestational diabetes mellitus (GDM) women through the Wnt/β-catenin pathway. METHODS Glucose uptake was analyzed by plasma GLUT1 and GLUT4 levels with ELISA and measured by the expression of GLUT4 and INSR with immunofluorescence and Western blotting. Apoptosis was measured by the expression of Bcl-2 and Caspase3 by Western blotting and flow cytometry. Wnt/β-catenin signaling measured by Western blotting. In vitro studies were performed using HTR-8/SVneo cells that were cultured and treated with high glucose (HG), sh-MUC1 and FH535 (inhibitor of Wnt/β-catenin signaling). RESULTS MUC1 was highly expressed in the placental trophoblasts of GDM, and the Wnt/β-catenin pathway was activated, along with dysfunction of glucose uptake and apoptosis. MUC1 knockdown resulted in increased invasiveness and decreased apoptosis in trophoblast cells. The initial linkage between MUC1, the Wnt/β-catenin pathway, and glucose uptake was confirmed by using an HG-exposed HTR-8/SVneo cell model with MUC1 knockdown. MUC1 knockdown inhibited the Wnt/β-catenin signaling pathway and reversed glucose uptake dysfunction and apoptosis in HG-induced HTR-8/SVneo cells. Meanwhile, inhibition of Wnt/β-catenin signaling could also reverse the dysfunction of glucose uptake and apoptosis. CONCLUSIONS In summary, the increased level of MUC1 in GDM could abnormally activate the Wnt/β-catenin signaling pathway, leading to trophoblast dysfunction, which may impair glucose uptake and induce apoptosis in placental tissues of GDM women.
Collapse
Affiliation(s)
- Shuang-Shuang Cui
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Ping Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Lu Sun
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yu-Lin-Lan Yuan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jingyun Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Feng-Xiang Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
8
|
Vu HT, Kaur H, Kies KR, Starks RR, Tuteja G. Identifying novel regulators of placental development using time-series transcriptome data. Life Sci Alliance 2023; 6:6/2/e202201788. [PMID: 36622342 PMCID: PMC9748866 DOI: 10.26508/lsa.202201788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The placenta serves as a connection between the mother and the fetus during pregnancy, providing the fetus with oxygen, nutrients, and growth hormones. However, the regulatory mechanisms and dynamic gene interaction networks underlying early placental development are understudied. Here, we generated RNA-sequencing data from mouse fetal placenta at embryonic days 7.5, 8.5, and 9.5 to identify genes with timepoint-specific expression, then inferred gene interaction networks to analyze highly connected network modules. We determined that timepoint-specific gene network modules were associated with distinct developmental processes, and with similar expression profiles to specific human placental cell populations. From each module, we identified hub genes and their direct neighboring genes, which were predicted to govern placental functions. We confirmed that four novel candidate regulators identified through our analyses regulate cell migration in the HTR-8/SVneo cell line. Overall, we predicted several novel regulators of placental development expressed in specific placental cell types using network analysis of bulk RNA-sequencing data. Our findings and analysis approaches will be valuable for future studies investigating the transcriptional landscape of early development.
Collapse
Affiliation(s)
- Ha Th Vu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Kelby R Kies
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Abdul Khaliq S, Umair Z, Baek MO, Chon SJ, Yoon MS. C-Peptide Promotes Cell Migration by Controlling Matrix Metallopeptidase-9 Activity Through Direct Regulation of β-Catenin in Human Endometrial Stromal Cells. Front Cell Dev Biol 2022; 10:800181. [PMID: 35127683 PMCID: PMC8814361 DOI: 10.3389/fcell.2022.800181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The motility of endometrial stromal cells (ESCs) contributes to the restoration of the endometrial functional layer and subsequently supports the trophoblast invasion during early pregnancy. Following ESCs differentiation through decidualization in response to progesterone during the menstrual cycle and embryo implantation, decidualized ESCs (D-ESCs) have greater motility and invasive activity. The human proinsulin-connecting peptide (C-peptide) is produced in equimolar amounts during the proteolysis of insulin in pancreatic β-cells. However, the function of C-peptide in the cellular motility of the human endometrium remains unexamined. In the present study, C-peptide was identified as a determinant of undecidualized human endometrial stromal cells (UnD-ESCs) migration. C-peptide promoted the migration and invasion of UnD-ESCs and trophoblast-derived Jeg3 cells, but not that of ESCs post decidualization, a functional and biochemical differentiation of UnD-ESCs. Both Akt and protein phosphatase 1 regulated β-catenin phosphorylation in UnD-ESCs, not D-ESCs, thereby promoting β-catenin nuclear translocation in C-peptide-treated UnD-ESCs. C-peptide was also observed to increase matrix metallopeptidase-9 (MMP9) activity by increasing MMP9 expression and decreasing the expression of metallopeptidase inhibitor 1 (TIMP1) and TIMP3. Their expression was modulated by the direct binding of β-catenin in the regulatory region of the promoter of MMP9, TIMP1, and TIMP3. Inhibition of either β-catenin or MMP9 dampened C-peptide-enhanced migration in UnD-ESCs. Together, these findings suggest that C-peptide levels are critical for the regulation of UnD-ESC migration, providing evidence for the association between C-peptide levels and the failure rate of trophoblast invasion by inducing abnormal migration in UnD-ESCs in hyperinsulinemia or PCOS patients.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- *Correspondence: Mee-Sup Yoon,
| |
Collapse
|
10
|
Hirschberg AL, Jakson I, Graells Brugalla C, Salamon D, Ujvari D. Interaction between insulin and androgen signalling in decidualization, cell migration and trophoblast invasion in vitro. J Cell Mol Med 2021; 25:9523-9532. [PMID: 34463022 PMCID: PMC8505820 DOI: 10.1111/jcmm.16892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023] Open
Abstract
Finely tuned decidualization of endometrial stromal fibroblasts into decidual cells is crucial for successful implantation and a healthy pregnancy. Both insulin and androgens are known to modulate decidualization, however, their complex effect on this process has not been fully elucidated. As hyperinsulinemia and hyperandrogenism are associated in clinical conditions, we aimed to investigate the interaction between insulin and androgens on decidualization. Primary human endometrial stromal cells were decidualized in vitro in the presence of insulin and/or androgens (dihydrotestosterone (DHT), testosterone). Gene or protein expressions of decidualization markers were measured, and cells size characteristics were determined. Migration of decidualizing endometrial stromal cells and invasion of HTR‐8/SVneo trophoblast spheroids were assessed. We found that insulin and androgens in combination enhanced the upregulation of several decidualization markers including prolactin, tissue factor, tissue inhibitor of matrix metalloproteinase 3 and connexin‐43, and also interacted in modulating cell size characteristics resulting in enlarged decidualizing cells. However, insulin and DHT together restricted the migration of decidualizing cells and invasion of trophoblast spheroids. Our findings suggest that insulin and androgens interact to potentiate the process of decidualization. On the other hand, inhibited cell migration and trophoblast invasion might negatively impact the function of decidualizing endometrial stromal cells.
Collapse
Affiliation(s)
- Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ivika Jakson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Daniel Salamon
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|