1
|
Ji Q, Zhang S, Jiang W, Wang J, Luan Y, Xin Q. Serum protein profile analysis via label-free quantitation proteomics in patients with early-onset preeclampsia. J OBSTET GYNAECOL 2023; 43:2259982. [PMID: 37743728 DOI: 10.1080/01443615.2023.2259982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Preeclampsia (PE) is a serious pregnancy complication, resulting in potentially life-threatening conditions for both mother and foetus. It is worth noting that early-onset PE has become a great challenge for clinicians due to its complex manifestation, rapid progression and serious complications. This study aims to investigate differential serum proteome profiles in patients with early-onset PE. METHODS Each serum sample was separated using a nanoliter flow rate Easy-nLC chromatography system. Then the samples were analysed by mass spectrometry. Bioinformatics analyses were conducted to analyse the functional categories or signal transduction pathways for differentially abundant proteins. Key proteins identified by mass spectrometry were verified by ELISA. RESULTS We found 30 and 34 proteins were upregulated and downregulated in early-onset PE patients (n = 3) vs controls (n = 3), respectively. Functional enrichment analysis revealed differentially expressed proteins related to the immune response and regulation of peptidase activity. ELISA confirmed that there were lower CSH1 levels and higher LPA concentrations in the serum samples of early-onset PE patients (n = 22) than in healthy controls (n = 19) (p < 0.05 for CSH1 and p < 0.001 for LPA). CONCLUSIONS This study revealed the critical features of serum proteins in early-onset PE patients. LPA and CSH1 may serve as biomarkers for early-onset PE diagnosis and therapy.
Collapse
Affiliation(s)
- Qinghong Ji
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Shulin Zhang
- Department of Digestive Disease, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Wen Jiang
- Central Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Jue Wang
- Central Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Qian Xin
- Central Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Ma J, Wu H, Yang X, Zheng L, Feng H, Yang L. Identification and validation of an angiogenesis-related signature associated with preeclampsia by bioinformatic analysis. Medicine (Baltimore) 2023; 102:e32741. [PMID: 36749240 PMCID: PMC9902003 DOI: 10.1097/md.0000000000032741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder with high morbidity and mortality rates for both mothers and newborns. This study explores potential diagnostic indicators of PE. We downloaded the messenger ribonucleic acid profiles of the GSE75010 dataset from the Gene Expression Omnibus database, and used placenta samples to carry out different analyses including differential expression, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. Least absolute shrinkage and selection operator regression was constructed and the receiver operating characteristic curve was drawn to evaluate the accuracy of the model. An external validation was conducted to prove the stability of the risk model. We found 140 angiogenesis-related genes and identified 29 angiogenesis-related genes between the 2 groups, including 12 upregulated genes and 17 downregulated genes. In addition, we established a 12-gene risk signature, which has a high accuracy in predicting PE during pregnancy (area under curve = 0.90). The immune infiltration characteristics are differentially distributed in the 2 groups, which may be the cause of hypertension during pregnancy. The external validation with the GSE25906 dataset confirmed the high accuracy of our model (area under curve = 0.87). Our results outline the characteristics of a set of genes potentially involved in PE and its subgroups, contributing to a better understanding of the molecular mechanisms of PE.
Collapse
Affiliation(s)
- Jiancai Ma
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Hong Wu
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Xiaofang Yang
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Lulu Zheng
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Haiqin Feng
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
| | - Liping Yang
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, China
- * Correspondence: Liping Yang, Department of Obstetrics and Gynecology, Handan Central Hospital, 59 Congtai North Road, Handan, Hebei Province 056001, China (e-mail: )
| |
Collapse
|
3
|
Wang H, Shi Y, Ma J, Wang W, Gao J, Zhao L, Zhao T, Ding G. Integrated Proteomic and N-Glycoproteomic Profiling of Placental Tissues of Patients with Preeclampsia. Int J Womens Health 2023; 15:59-68. [PMID: 36660462 PMCID: PMC9844819 DOI: 10.2147/ijwh.s387672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Preeclampsia (PE) is a multi-system disorder of pregnancy that poses a serious threat to maternal and perinatal health worldwide. This study aims to evaluate the global alterations of protein expression and N-glycosylations that are crucial for PE pathogenesis. Here, tandem mass tag labeling combined with LC-MS/MS was employed to determine the global expression of all proteins and intact glycopeptide in placentas from three healthy pregnant women, three patients with early-onset severe PE, and three patients with late-onset severe PE. Results A total of 2260 proteins were quantified across 9 placental tissues, of which 37 and 23 were differentially expressed in the early-onset and late-onset PE groups, compared to the controls. A total of 789 glycopeptides were accurately quantified, which were derived from 204 glycosylated sites in 159 glycoproteins and were modified by 59 N-Linked glycans. A total of 123 differently expressed glycopeptides, which were from 47 glycoproteins were identified among three groups. Through a combined analysis of proteomic and glycoproteomic data, it was found that the changes in 10 glycoproteins were caused by the difference in glycosylation level but not in the protein abundance level. Conclusion This is the first study to conduct an integrated proteomic and glycoproteomic characterization of placental tissues of PE patients. Our findings suggest that glycosylation modification may affect the molecular function of proteins through changes in the glycosylation structure or the occupancy of glycosylation, which will provide new insights to help elucidating the pathogenic mechanism of PE.
Collapse
Affiliation(s)
- Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Yinmin Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Jiying Ma
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Wenxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Jianrong Gao
- Department of Obstetrics, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, 710018, People’s Republic of China
| | - Lili Zhao
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Ting Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Guifeng Ding
- Department of Obstetrics and Gynecology, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, 830001, People’s Republic of China,Correspondence: Guifeng Ding, Department of Obstetrics and Gynecology, Urumqi Maternal and Child Health Care Hospital, No. 344 Jiefang South Road, Urumqi, Xinjiang, People’s Republic of China, Tel +86 1 331 988 0258, Fax + 86 991-8554656, Email
| |
Collapse
|
4
|
Hu B, Li D, Tang D, Shangguan Y, Cao Y, Guo R, Luan S, Yun C, Morgera S, Hocher B, Krämer BK, Wang Y, Yin L, Dai Y. Integrated proteome and acetylome analyses unveil protein features of gestational diabetes mellitus and preeclampsia. Proteomics 2022; 22:e2200124. [PMID: 36097143 DOI: 10.1002/pmic.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022]
Abstract
Gestational diabetes mellitus (GDM) and preeclampsia (PE) are associated with maternal and infant health. Although the pathogenesis of PE and GDM remains controversial, oxidative stress is involved in the underlying pathology of GDM and PE. Protein lysine acetylation (Kac) plays an important regulatory role in biological processes. There is little data regarding the association of the maternal acetylome with GDM and PE. This study aimed to assess the potential value of the proteome and acetylome for GDM and PE. In our study, we included placental tissues from healthy individuals (n = 6), GDM patients (n = 6), and PE patients (n = 6) to perform 4D-label free quantification proteomics analysis and PRM analysis. We identified 22 significantly regulated proteins and 192 significantly regulated acetylated proteins between the GDM and PE groups. Furthermore, 192 significantly regulated acetylated proteins were mainly enriched in endoplasmic reticulum stress (ERS) and ferroptosis pathways. Seventeen acetylated sites in these two pathways were verified by PRM analysis. Our comprehensive analysis revealed key features of GDM/PE-significantly regulated acetylated proteins in the placentas from GDM and PE. The results of signaling pathway analysis focused on ERS and ferroptosis. These findings may help explore the underlying pathology, new biomarkers, and therapeutic targets of GDM and PE.
Collapse
Affiliation(s)
- Biying Hu
- Clinical Medical Research Center, Guangdong Clinical Medical Research Center of Birth Defects, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China.,Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Dandan Li
- Clinical Medical Research Center, Guangdong Clinical Medical Research Center of Birth Defects, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Clinical Medical Research Center of Birth Defects, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yu Shangguan
- Clinical Medical Research Center, Guangdong Clinical Medical Research Center of Birth Defects, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yuzhi Cao
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Ruonan Guo
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Guangdong, China
| | - Chen Yun
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Yinglan Wang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Clinical Medical Research Center of Birth Defects, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Shangguan Y, Wang Y, Shi W, Guo R, Zeng Z, Hu W, Cai W, Yan Q, Xu Y, Tang D, Dai Y. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia. J Cell Mol Med 2021; 25:10614-10626. [PMID: 34697885 PMCID: PMC8581308 DOI: 10.1111/jcmm.16997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a dangerous hypertensive disorder that occurs during pregnancy. The specific aetiology and pathogenesis of PE have yet to be clarified. To better reveal the specific pathogenesis of PE, we characterized the proteome and acetyl proteome (acetylome) profile of placental tissue from PE and normal-term pregnancy by label-free quantification proteomics technology and PRM analysis. In this research, 373 differentially expressed proteins (DEPs) were identified by proteome analysis. Functional enrichment analysis revealed significant enrichment of DEPs related to angiogenesis and the immune system. COL12A1, C4BPA and F13A1 may be potential biomarkers for PE diagnosis and new therapeutic targets. Additionally, 700 Kac sites were identified on 585 differentially acetylated proteins (DAPs) by acetylome analyses. These DAPs may participate in the occurrence and development of PE by affecting the complement and coagulation cascades pathway, which may have important implications for better understand the pathogenesis of PE. In conclusion, this study systematically analysed the reveals critical features of placental proteins in pregnant women with PE, providing a resource for exploring the contribution of lysine acetylation modification to PE.
Collapse
Affiliation(s)
- Yu Shangguan
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yinglan Wang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wei Shi
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Ruonan Guo
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Zhipeng Zeng
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wenlong Hu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wanxia Cai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yong Xu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Donge Tang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
| |
Collapse
|