1
|
Bai X, Liu XH, Liang HW, Li YS, Shan BF, Tang JM. Testicular choriocarcinoma with pelvic and pulmonary metastases: a case report. Front Oncol 2024; 14:1427341. [PMID: 39091914 PMCID: PMC11291199 DOI: 10.3389/fonc.2024.1427341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Testicular tumors represent a common form of solid tumor in young men, with choriocarcinoma of the testis being a rare, non-granulomatous germ cell tumor. It accounts for less than 0.3% of all testicular germ cell tumors. Pelvic and pulmonary metastases originating from testicular choriocarcinoma are exceptionally uncommon in men. This study describes a case of a 27-year-old male diagnosed with testicular choriocarcinoma, presenting initially with nausea, vomiting, and abdominal pain. Furthermore, this review encompasses cases of testiclar choriocarcinoma in individuals aged 30 years and below, both in China and internationally, over the past 20 years.
Collapse
Affiliation(s)
- Xin Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao H. Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai W. Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi S. Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Biao F. Shan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jian M. Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Cai X, Su Y, Ning J, Fan X, Shen M. Research on the Effect and Mechanism of Selenium on Colorectal Cancer Through TRIM32. Biol Trace Elem Res 2024:10.1007/s12011-024-04206-4. [PMID: 38691306 DOI: 10.1007/s12011-024-04206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The intake of selenium (Se) in the human body is negatively correlated with the risk of colorectal cancer (CRC), but its mechanism in the occurrence and development of CRC is not clear. This study aimed to evaluate the therapeutic effect of Se on CRC, and explore the anti-tumor effect of Se supplementation on CRC and its molecular mechanism. In this study, we utilized colony formation assay, cell scratch test, Transwell migration, and flow cytometry to assess cell proliferation, migration, and apoptosis. Our findings demonstrate that Se effectively suppresses the growth and proliferation of CRC cell lines HCT116 and SW480 and promoting cellular apoptosis. In vivo experiments demonstrated a significant inhibitory effect of Se on tumor growth. CRC-related datasets were extracted from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases for differential expression analysis of TRIM32 and survival analysis. We found that TRIM32 was highly expressed in tumor tissues of CRC patients and correlated with a poor prognosis. Furthermore, through RNA sequencing analysis, we identified TRIM32 as a gene that was significantly decreased after Se treatment in HCT116 cells. This finding was subsequently validated by Western blot results. Moreover, TRIM32 knockdown combined with Se treatment significantly inhibited cell growth proliferation and migration and further induced apoptosis of colorectal cancer cells. In conclusion, our findings provided evidence that Se inhibited the growth of colorectal cancer cells by down-regulating TRIM32.
Collapse
Affiliation(s)
- Xiaohua Cai
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yintong Su
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiayu Ning
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingxing Fan
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mei Shen
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li S, Jiang F, Chen F, Deng Y, Huang H. Silencing long noncoding RNA LINC01133 suppresses pancreatic cancer through regulation of microRNA-1299-dependent IGF2BP3. J Biochem Mol Toxicol 2024; 38:e23534. [PMID: 37718503 DOI: 10.1002/jbt.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The deregulation of long noncoding RNAs (lncRNAs) holds great potential in the treatment of multiple cancers, including pancreatic cancer (PC). However, the specific molecular mechanisms by which LINC01133 contributes to pancreatic cancer remain unknown. Subsequent to bioinformatics analysis, we predicted and analyzed differentially expressed lncRNAs, microRNAs, and genes in pancreatic cancer. We determined the expression patterns of LINC01133, miR-1299, and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in pancreatic cancer cells, and validated their interactions through luciferase reporter and RNA immunoprecipitation assays. We implemented loss-of-function and gain-of-function experiments for LINC01133, miR-1299, and IGF2BP3 to assay their potential effects on pancreatic cancer cell functions. We observed high expression of LINC01133 and IGF2BP3, but low expression of miR-1299, in pancreatic cancer cells. Furthermore, we found that LINC01133 enhances IGF2BP3 through binding with miR-1299. Silencing LINC01133 or IGF2BP3 and/or overexpressing miR-1299 limited pancreatic cancer cell proliferation, invasion, epithelial-mesenchymal transition, and suppressed tumorigenic abilities in mice lacking T cells (nude mice). Overall, our findings identified that silencing LINC01133 downregulates IGF2BP3 by upregulating miR-1299 expression, ultimately leading to the prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Sumei Li
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Fengru Jiang
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Feiyu Chen
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Yinzhao Deng
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Haiying Huang
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
6
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|