1
|
Tseng CF, Chen HM, Liao TL, Hsu FT, Yeh CJ, Chen WT, Kok SH. Magnolol's Therapeutic Efficacy and Immunomodulatory Effects in Oral Squamous Cell Carcinoma. In Vivo 2024; 38:2152-2164. [PMID: 39187336 PMCID: PMC11363751 DOI: 10.21873/invivo.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Oral squamous cell carcinoma (OSCC) presents a significant health challenge, requiring effective treatments. Magnolol, a compound with potential anticancer properties, warrants investigation in OSCC treatment. Here, we aimed to assess the efficacy of magnolol in inhibiting progression of OSCC and to explore the underlying mechanisms of its action. MATERIALS AND METHODS We evaluated the effect of magnolol on tumor progression using the MOC1-bearing orthotopic model. We examined its impact on pathology and toxicity through hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and biochemical analysis. We also investigated the immunoregulatory effects of magnolol in the MOC1-bearing model using flow cytometry. RESULTS At high doses, magnolol significantly reduced tumor volume (p<0.0001 for comparisons between treated with magnolol and untreated groups) and weight loss by 70% in vivo. It also induced caspase-dependent apoptosis, evidenced by 2.42-, 2-, and 2.2-fold increases in the expression of caspase-3, -8, and -9, respectively, in mouse tumors treated with high 60 mg/kg of magnolol compared to untreated (p<0.0001 for all comparisons). Magnolol demonstrated no toxicity, maintaining body weight and normal biochemical parameters, including liver and kidney function. Pathological evaluations showed no adverse effects on organs in all treatment groups. Moreover, high doses of magnolol enhanced natural killer cells (by 3%), dendritic cells (20-25%), and cytotoxic T cells (20-40%) while reducing myeloid-derived suppressor cells and regulatory T cells by 1.5 times. CONCLUSION Magnolol demonstrates potential as a therapeutic agent for OSCC, offering antitumor efficacy and immunomodulatory benefits.
Collapse
Affiliation(s)
- Chien-Fu Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
- Department of Dentistry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Hsin-Ming Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Tsai-Lan Liao
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chi-Jung Yeh
- Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.;
| | - Wei-Ting Chen
- Department of Psychiatry, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan, R.O.C.;
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan, R.O.C
| | - Sang-Heng Kok
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C.;
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| |
Collapse
|
2
|
Cini JK, Dexter S, Rezac DJ, McAndrew SJ, Hedou G, Brody R, Eraslan RN, Kenney RT, Mohan P. SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2023; 14:1326927. [PMID: 38250068 PMCID: PMC10798159 DOI: 10.3389/fimmu.2023.1326927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity. Methods To address these challenges, we fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv). This novel fusion protein, IL12-FHAB-IL15 (SON-1210), is anticipated to amplify the therapeutic impact of interleukins and combination immunotherapies in human TME. The molecule was studied in vitro and in animal models to assess its pharmacokinetics, potency, functional characteristics, safety, immune response, and efficacy. Results SON-1210 demonstrated robust binding affinity to albumin and exhibited the anticipated in vitro activity and tumor model efficacy that might be expected based on decades of research on native IL-12 and IL-15. Notably, in the B16F10 melanoma model (a non-immunogenic, relatively "cold" tumor), the murine counterpart of the construct, which had mouse (m) and human (h) cytokine sequences for the respective payloads (mIL12-FHAB-hIL15), outperformed equimolar doses of the co-administered native cytokines in a dose-dependent manner. A single dose caused a marked reduction in tumor growth that was concomitant with increased IFNγ levels; increased Th1, CTL, and activated NK cells; a shift in macrophages from the M2 to M1 phenotype; and a reduction in Treg cells. In addition, a repeat-dose non-human primate (NHP) toxicology study displayed excellent tolerability up to 62.5 µg/kg of SON-1210 administered three times, which was accompanied by the anticipated increases in IFNγ levels. Toxicokinetic analyses showed sustained serum levels of SON-1210, using a sandwich ELISA with anti-IL-15 for capture and biotinylated anti-IL-12 for detection, along with sustained IFNγ levels, indicating prolonged kinetics and biological activity. Conclusion Collectively, these findings support the suitability of SON-1210 for patient trials in terms of activity, efficacy, and safety, offering a promising opportunity for solid tumor immunotherapy. Linking cytokine payloads to a fully human albumin binding domain provides an indirect opportunity to target the TME using potent cytokines in cis that can redirect the immune response and control tumor growth.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Gael Hedou
- Sonnet BioTherapeutics, CH S.A., Geneva, GE, Switzerland
| | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
3
|
Chiang CY, Huang MC, Tsai SC, Hsu FT, Liao TL, Yu JH, Lin TH, Huang HH, Liao PA. Humanized PD-1 Knock-in Mice Reveal Nivolumab's Inhibitory Effects on Glioblastoma Tumor Progression In Vivo. In Vivo 2023; 37:1991-2000. [PMID: 37652472 PMCID: PMC10500530 DOI: 10.21873/invivo.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Immunotherapy has been considered a promising approach for brain tumor treatment since the discovery of the brain lymphatic system. Glioblastoma (GBM), the most aggressive type of brain tumor, is associated with poor prognosis and a lack of effective treatment options. MATERIALS AND METHODS To test the efficacy of human anti-PD-1, we used a humanized PD-1 knock-in mouse to establish an orthotopic GBM-bearing model. RESULTS Nivolumab, a human anti-PD-1, effectively inhibited tumor growth, increased the survival rate of mice, enhanced the accumulation and function of cytotoxic T cells, reduced the accumulation and function of immunosuppressive cells and their related factors, and did not induce tissue damage or biochemical changes. The treatment also induced the accumulation and activation of CD8+ cytotoxic T cells, while reducing the accumulation and activation of myeloid-derived suppressor cells, regulatory T cells, and tumor-associated macrophages in the immune microenvironment. CONCLUSION Nivolumab has the potential to be a treatment for GBM.
Collapse
Affiliation(s)
- Chun-Yu Chiang
- Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan, R.O.C
| | - Meng-Chu Huang
- Department of Medical Imaging, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Shih-Chong Tsai
- Institute of Biologics, Development Center for Biotechnology, Taipei, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tsai-Lan Liao
- Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jei-Hwa Yu
- Institute of Biologics, Development Center for Biotechnology, Taipei, Taiwan, R.O.C
| | - Tzu-Hsiang Lin
- Department of Radiology, Cathay General Hospital, Taipei, Taiwan, R.O.C
| | - Hua-Hsih Huang
- Department of Medical Imaging, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.;
| | - Pen-An Liao
- Department of Radiology, Cathay General Hospital, Taipei, Taiwan, R.O.C.;
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C
| |
Collapse
|
4
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|