1
|
Yu C, Lei H, Hou X, Yan S. Molecular Mechanisms of ARD1 in Tumors. Cancer Med 2025; 14:e70708. [PMID: 40026288 PMCID: PMC11873779 DOI: 10.1002/cam4.70708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Arrest-deficient protein 1 (ARD1) is an acetyltransferase that acetylates the N-terminal amino acids and internal lysine residues of proteins. It plays a crucial role in various cellular processes. The significance of ARD1 in tumor development has become increasingly evident in recent years. METHODS This review analyzes the regulatory role of ARD1 in tumor progression by examining its involvement in processes such as cell cycle regulation, cell proliferation, metastasis, apoptosis, and autophagy. Additionally, we discuss the expression patterns and molecular mechanisms of ARD1 in different types of cancer. RESULTS Elevated levels of ARD1 have been reported in several cancer types. Its increased expression is associated with various tumor characteristics, suggesting it may serve as a potential prognostic biomarker. Furthermore, ARD1 could be targeted for the development of novel cancer therapies. CONCLUSION Understanding the role of ARD1 in tumor biology provides valuable insights into potential therapeutic targets and biomarkers for cancer treatment. This review highlights the advances in ARD1-related research and suggests that it may be a promising avenue for improving cancer prognosis and treatment strategies.
Collapse
Affiliation(s)
- Chunjiao Yu
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Hongtao Lei
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Xuefei Hou
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| | - Shan Yan
- Institute of Biomedical EngineeringKunming Medical UniversityChenggong District, KunmingYunnanPeople's Republic of China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineChenggong District, KunmingYunnanPeople's Republic of China
| |
Collapse
|
2
|
Saha S, Jain BP, Ghosh DK, Ranjan A. Conformational plasticity links structural instability of NAA10 F128I and NAA10 F128L mutants to their catalytic deregulation. Comput Struct Biotechnol J 2024; 23:4047-4063. [PMID: 39610905 PMCID: PMC11603127 DOI: 10.1016/j.csbj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The acetylation of proteins' N-terminal amino groups by the N-acetyltransferase complexes plays a crucial role in modulating the spatial stability and functional activities of diverse human proteins. Mutations disrupting the stability and function of NAA10 result in X-linked rare genetic disorders. In this study, we conducted a global analysis of the impact of fifteen disease-associated missense mutations in NAA10. The analyses revealed that mutations in specific residues, such as Y43, V107, V111, and F128, predictably disrupted interactions essential for NAA10 stability, while most mutations (except R79C, A111W, Q129P, and N178K) expectedly led to structural destabilization. Mutations in many conserved residues within short linear motifs and post-translational modification sites were predicted to affect NAA10 functionality and regulation. All mutations were classified as pathogenic, with F128I and F128L identified as the most destabilizing mutations. The findings show that the F128L and F128I mutations employ different mechanisms for the loss of catalytic activities of NAA10F128L and NAA10F128I due to their structural instability. These two mutations induce distinct folding energy states that differentially modulate the structures of different regions of NAA10F128L and NAA10F128I. Specifically, the predicted instability caused by the F128I mutation results in decreased flexibility within the substrate-binding region, impairing the substrate peptide binding ability of NAA10F128I. Conversely, F128L is predicted to reduce the flexibility of the region containing the acetyl-CoA binding residues in NAA10F128L. Our study provides insights into the mechanism of catalytic inactivation of mutants of NAA10, particularly elucidating the mechanistic features of the structural and functional pathogenicity of the F128L and F128I mutations.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
4
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Ho KH, Pan KF, Cheng TY, Chien MH, Hua KT. Multiple impacts of Naa10p on cancer progression: Molecular functions and clinical prospects. Biochim Biophys Acta Rev Cancer 2023; 1878:188973. [PMID: 37659460 DOI: 10.1016/j.bbcan.2023.188973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ke-Fan Pan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tsu-Yao Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|