1
|
Li J, Sun L, Wang F, Yin S, Li S, Zhang J, Wu D. Pro-differentiative, Pro-adhesive and Pro-migratory Activities of Isorhamnetin in MC3T3-E1 Osteoblasts via Activation of ERK-dependent BMP2-Smad Signaling. Cell Biochem Biophys 2024; 82:3607-3617. [PMID: 39136840 DOI: 10.1007/s12013-024-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Osteoporosis (OP) is an epidemic bone remodeling disorder of growing relevance with the aging population. Considering that isorhamnetin (ISO), a flavonoid derived from plant, has been newly reckoned as an active ingredient in treating OP, our paper was conducted to investigate the regulatory role and mechanism of ISO in OP. CCK-8 method detected cell activity. Alkaline phosphatase (ALP) assay kit, ALP staining and alizarin red S staining measured osteogenic differentiation. RT-qPCR and Western blot examined the expressions of osteoblast-related proteins. Wound healing and cell adhesion assays severally detected cell migration and adhesion. Also, Western blot tested the expressions of extracellular signal-regulated kinase (ERK) signaling-associated proteins. As illustrated, after MC3T3-E1 pre-osteoblasts were stimulated to differentiate to osteoblasts, ISO markedly promoted the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts in a concentration-dependent manner. In addition, administration of ISO functioned as an activator of ERK-dependent BMP2-Smad signaling in MC3T3-E1 osteoblasts and pretreatment with ERK inhibitor PD98059 partially compensated the impacts of ISO on MC3T3-E1 osteoblasts differentiation, mineralization, migration as well as adhesion. To be summarized, ISO might activate ERK-dependent BMP2-Smad signaling to facilitate the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts, suggesting the protective potential of ISO in OP.
Collapse
Affiliation(s)
- Jing Li
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Lili Sun
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Fanli Wang
- Pharmacy Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Shihua Yin
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Siwei Li
- Department of Orthopedics, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Jiaoyue Zhang
- Genetic Testing Center, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China.
| | - Dengbin Wu
- Oncology Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| |
Collapse
|
2
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Yun HM, Kim E, Kwon YJ, Park KR. Vanillin Promotes Osteoblast Differentiation, Mineral Apposition, and Antioxidant Effects in Pre-Osteoblasts. Pharmaceutics 2024; 16:485. [PMID: 38675146 PMCID: PMC11054936 DOI: 10.3390/pharmaceutics16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant vanillin (4-hydroxy-3-methoxybenzaldehyde) is used as a flavoring in foods, beverages, and pharmaceuticals. Vanillin possesses various biological effects, such as antioxidant, anti-inflammatory, antibacterial, and anticancer properties. This study aimed to investigate the biological activities of vanillin purified from Adenophora triphylla var. japonica Hara on bone-forming processes. Vanillin treatment induced mineralization as a marker for mature osteoblasts, after stimulating alkaline phosphatase (ALP) staining and activity. The bone-forming processes of vanillin are mainly mediated by the upregulation of the bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, and runt-related transcription factor 2 (RUNX2) pathway during the differentiation of osteogenic cells. Moreover, vanillin promoted osteoblast-mediated bone-forming phenotypes by inducing migration and F-actin polymerization. Furthermore, we validated that vanillin-mediated bone-forming processes were attenuated by noggin and DKK1. Finally, we demonstrated that vanillin-mediated antioxidant effects prevent the death of osteoblasts during bone-forming processes. Overall, vanillin has bone-forming properties through the BMP2-mediated biological mechanism, indicating it as a bone-protective compound for bone health and bone diseases such as periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eonmi Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
4
|
Zhou Y, Han Z, Zhao Z, Zhang J. Scoparone attenuates glioma progression and improves the toxicity of temozolomide by suppressing RhoA/ROCK1 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:562-571. [PMID: 37449671 DOI: 10.1002/tox.23882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioma, a type of malignant brain tumor, has become a challenging health issue globally in recent years. METHODS In this study, we investigated the potential therapeutic role of scoparone in glioma and the underlying mechanism. Initially, transcriptome sequencing was conducted to identify genes that exhibited differential expression in glioma cells treated with scoparone compared to untreated cells. Subsequently, the impact of scoparone on the proliferation, migration, and invasion of glioma cells was assessed in vitro using a range of assays including cell viability, colony formation, wound healing, and transwell assays. Moreover, the apoptotic effects of scoparone on glioma cells were evaluated through flow cytometry and western blot analysis. Furthermore, we established a glioma xenograft mouse model to assess the in vivo antitumor activity of scoparone. Lastly, by integrating transcriptome analysis, we endeavored to unravel the molecular mechanisms underlying the observed antitumor effects of scoparone by examining the expression levels of RhoA/ROCK1 signaling pathway components using western blot analysis and qRT-PCR. RESULTS Our transcriptome sequencing results revealed that scoparone significantly downregulated RhoA/ROCK1 signaling in glioma cells. Furthermore, scoparone treatment inhibited glioma cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. Moreover, scoparone reduced tumor growth and prolonged survival in a glioma xenograft mouse model, and improved the toxicity of temozolomide. Finally, our results showed that the antitumor effects of scoparone were mediated by the suppression of RhoA/ROCK1 signaling. CONCLUSION Scoparone could be a promising therapeutic agent for glioma by suppressing RhoA/ROCK1 signaling. These findings pave the way for future research endeavors aimed at the development and optimization of scoparone-based therapeutic strategies.
Collapse
Affiliation(s)
- Yuhao Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenying Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Zheng B, Song W, Liu C, Kou X, Yu Y, Wang Y, Ma J, Liu Y, Jiang J, Xue Z. Scoparone from Artemisia capillaris Thunb. induces apoptosis in HepG2 cells via activation of both intracellular and extracellular pathways. Nat Prod Res 2023:1-7. [PMID: 38148156 DOI: 10.1080/14786419.2023.2298383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Six separated compounds were identified from Artemisia capillaris Thunb., and they were 7-methoxycoumarin (1), 6,7-dimethoxycoumarin (2), 7-hydroxy-6-methoxycoumarin (3), quercetin (4), chlorogenic acid (5) and caffeic acid (6). Among them, 6,7-dimethoxycoumarin, as known as scoparone, was the most effective on scavenging ABTS free radicals (IC50 = 0.97 μΜ) and was then tested by cytotoxic activity and pro-apoptotic activity against HepG2 cells. Scoparone dose-dependently and time-dependently inhibited the cell proliferation. Furthermore, scoparone induced the expression of Bax, concurrently suppressing the expression of Bcl-2, resulting in a noteworthy elevation in the Bax/Bcl-2 ratio to up-regulate Caspase-3 activity, thus inducing cell apoptosis via the intracellular pathway. Meanwhile, scoparone promoted the expression of Fas, FasL, FADD, Caspase-8 and Caspase-3, indicating that scoparone also triggered apoptosis via the extracellular pathway. In a word, scoparone demonstrated remarkable antitumor capability to induce apoptosis of HepG2 cells through both intracellular and extracellular pathways.
Collapse
Affiliation(s)
- Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Weichen Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jingyu Jiang
- Xizang Institute for Food and Drug Control, NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine and Tibetan Medicine, Lhasa, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Gu DR, Yang H, Kim SC, Hwang YH, Ha H. Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss. Int J Mol Sci 2023; 24:14715. [PMID: 37834161 PMCID: PMC10572401 DOI: 10.3390/ijms241914715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Angelica dahurica radix has a long history of traditional use in China and Korea for treating headaches, cold-damp pain and skin diseases. Despite various pharmacological studies on A. dahurica, its impact on bones remains unclear. Hence, this study investigated the inhibitory effect of A. dahurica's radix water extract (WEAD) on osteoclast differentiation. In vitro experiments showed that WEAD effectively suppresses osteoclast differentiation. Treatment of an osteoclast precursor with WEAD significantly suppressed the expression of nuclear factor of activated T-cells 1 (NFATc1), essential transcription factor for osteoclastogenesis, while increasing the expression of negative regulators, interferon regulatory factor 8 (Irf8) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB). Consistent with the in vitro findings, the oral administration of WEAD (100 and 300 mg/kg/day) to mice subjected to surgical ovariectomy for a duration of six weeks alleviated bone loss, while also mitigating weight gain and liver fat accumulation. In addition, we also identified phytochemicals present in WEAD, known to regulate osteoclastogenesis and/or bone loss. These results suggest the potential use of WEAD for treating various bone disorders caused by excessive bone resorption.
Collapse
Affiliation(s)
- Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.)
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.)
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.)
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.)
- Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.)
| |
Collapse
|
7
|
Bailly C. Ruta angustifolia Pers. (Narrow-Leaved Fringed Rue): Pharmacological Properties and Phytochemical Profile. PLANTS (BASEL, SWITZERLAND) 2023; 12:827. [PMID: 36840175 PMCID: PMC9959652 DOI: 10.3390/plants12040827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/12/2023]
Abstract
The genus Ruta in the family Rutaceae includes about 40 species, such as the well-known plants R. graveolens L. (common rue) or R. chalepensis L. (fringed rue), but also much lesser-known species such as R. angustifolia Pers. (narrow-leaved fringed rue). This rue specie, originating from the Mediterranean region, is well-distributed in Southeast Asia, notably in the Indo-Chinese peninsula and other territories. In some countries, such as Malaysia, the plant is used to treat liver diseases and cancer. Extracts of R. angustifolia display antifungal, antiviral and antiparasitic effects. Diverse bioactive natural products have been isolated from the aerial parts of the plant, notably quinoline alkaloids and furocoumarins, which present noticeable anti-inflammatory, antioxidant and/or antiproliferative properties. The present review discusses the main pharmacological properties of the plant and its phytoconstituents, with a focus on the anticancer activities evidenced with diverse alkaloids and terpenoids isolated from the aerial parts of the plant. Quinoline alkaloids such as graveoline, kokusaginine, and arborinine have been characterized and their mode of action defined. Arborinine stands as a remarkable inhibitor of histone demethylase LSD1, endowed with promising anticancer activities. Other anticancer compounds, such as the furocoumarins chalepin and rutamarin, have revealed antitumor effects. Their mechanism of action is discussed together with that of other bioactive natural products, including angustifolin and moskachans. Altogether, R. angustifolia Pers. presents a rich phytochemical profile, fully consistent with the traditional use of the plant to treat cancer. This rue species, somewhat neglected, warrant further investigations as a medicinal plant and a source of inspiration for drug discovery and design.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|